US006778181B1

United States Patent

(12) (10) Patent No.: US 6,778,181 B1
Kilgariff et al. 5) Date of Patent: Aug. 17, 2004
(54) GRAPHICS PROCESSING SYSTEM HAVING 6,288,730 Bl 9/2001 Duluk, Jr. et al. 345/552
A VIRTUAL TEXTURING ARRAY 6,297,833 B1 * 10/2001 Ho et al. 345/582
6,333,744 B1 * 12/2001 Kirk et al. 345/506
(75) Inventors: Emmett M. Kilgariff, San Jose, CA 272_‘8%47“7‘43‘ g} : igggg% %alttle ~~~~~~ R ;ggg?
. . ,501, omson et al. .
(CUAS)(’UIS)?ne T. Mrazek, Redwood City, 6532013 Bl 3/2003 Papakipos ct al. 345/426
FOREIGN PATENT DOCUMENTS
(73) Assignee: NVIDIA Corporation, Santa Clara, CA
(US) WO 93/23816 11/1993 GO6F/15/334
WO 97/05575 2/1997 GO6T/15/00
(*) Notice: Subject to any disclaimer, the term of this WO 97/05576 201997 e GO6T/15/00
R 4 WO 00/10372 3/2000
patent is extended or adjusted under 35 WO 00/11562 3/2000 GOGF/15/00
U.S.C. 154(b) by 263 days. WO 00/11602 3/2000
WO 00/11603 3/2000
(21) Appl. No.: 10/012,895 WO 00/11604 3/2000
. WO 00/11605 3/2000
(22) Filed: Dec. 7, 2001 WO 00/11607 372000 ... G06T/1/20
WO 00/11613 3/2000 GO6T/15/00
Related U.S. Application Data WO 00/11614 3/2000 ... GO6T/17/00
(60) Provisional application No. 60,254,022, filed on Dec. 7, WO 00/19377 4/2000 G06T/15/00
2000.
* cited by examiner
(51) Int. CL7 oo G09G 5/00))
L2 T T o) K 345/582 Drimary Examiner—Kee M. Tung
(58) Field f Searchoooorvovree 345/631, 582, gg?é”o.mfy)zf‘ufem) or Firm—Silicon Valley IP Group,
345/506, 428, 558, 530, 501 » hevin . Llka
. 57 ABSTRACT
(56) References Cited

U.S. PATENT DOCUMENTS

4,996,666 A 2/1991 Duluk, Jr. .ocoovevrevrnee.. 365/49
5535288 A 7/1996 Chenetal. 382/236
5572634 A 11/1996 Duluk, Jr. «oocovevvenen.. 395/119
5574,835 A 11/1996 Duluk, Jr. et al. 395/121
5,596,686 A 1/1997 Duluk, Jr. oo, 395/122
5,669,010 A 9/1997 Duluk, Jr. 395/800.22
5077987 A 11/1999 Duluk, Jr. «ovcvvevvenen.n.. 345/441
6,181,352 B1 * 1/2001 Kirk et al. .ccocoovenne... 345/506
6,229,553 Bl 5/2001 Duluk, Jr. et al. 345/506
6,268,875 Bl 7/2001 Duluk, Jr. et al. 345/506
6285378 Bl 9/2001 Duluk, Jr. wovcvvevvenenn. 345/441

200

\‘

A graphics processing system is provided. The graphics
processing system includes a front end module for receiving
pixel data. A setup unit is coupled to the front end module
and generates parameter coefficients. A raster unit is coupled
to the setup unit and generates stepping information. A
virtual texturing array engine textures and colors the pixel
data based on the parameter coefficients and stepping infor-
mation. Also provided is a pixel engine adapted for process-
ing the textured and colored pixel data received from the
virtual texturing array engine.

21 Claims, 175 Drawing Sheets

208

Command
Front End
(CFE)

Instruction Stream

Viewport

206 ’—\ Setup

204

Parameter
Coefficients

202

—

r /

Raster Unit

Stepping Info,
Coverage Masks

——Mem Data—»]

To Mem Ctl

<+Mem Requests— \y0) Texturing Array
(VTA)

ARGB, Z, Fog, Coverage Masks

210

__—— Pixel Engine

A

U.S. Patent Aug. 17, 2004 Sheet 1 of 175 US 6,778,181 B1

120
NETWORK (135)
110 116 114 134
118
N\ \ N\ /

1o COMMUNICATION
CpPU ROM RAM ADAPTER ADAPTER

138
1w \

USER [
DISPLAY
INTERFACE
ADAPTER ADAPTER [__:

1324ﬁ 126% 128

U.S. Patent Aug. 17, 2004 Sheet 2 of 175 US 6,778,181 B1
200
\ 208
Command
Front End
(CFE)
Instruction Stream
Viewport
206
/\ Setup 204
l) Sideband
' State
Raster Unit
Parameter
Coefficients ‘
202 - Stepping Info,
\ Coverage Masks
(é \ 4 l
§ <+Mem Requests—1 /) Texturing Array
‘._...._....._‘_..___._._
0 ——Mem Data—» (VTA)
ARGB, Z, Fog, Coverage Masks
210
_——- Pixel Engine ———————

U.S. Patent Aug. 17, 2004 Sheet 3 of 175 US 6,778,181 B1

300

SGRAM or AGP Texture Memory Texture Palette
A R G B I palette | A R G B
index
RGB332 3 3 2
A8 8
I8 8
Al44 4 4
RGB Palette 8 8 8 8
ARGB Palette 8 6 6 6 6
Fig. 3
400
SGRAM or AGP Texture Memory Texture Palette
A R G B I palette § A R G B
index
RGB365 5 6 5
ARGB8332 8 3 3 2
ARGBI1555 1 5 5 5
ARGB4444 4 4 4 4
AISS 8 8
A & RGB Palette 8 8 8 8 8
Fig. 4
500
SGRAM or AGP Texture Memory (~ effective bits) Texture Palette
A R G B 1 palette | A R G B
index
ARGB888S (32 bit) 8 8 8 8
Compressed Texture || ~8 ~8 ~8 ~8
Compressed Render ~8 ~8 ~8
YUYV422 ~8 ~8 ~8
UYvy422 ~8 ~8 ~8

U.S. Patent Aug. 17, 2004 Sheet 4 of 175 US 6,778,181 B1

START

602 600

[

RETRIEVING TEXTURE INFORMATION USING TEXTURE COORDINATES

604

.

UTILIZING THE TEXTURE INFORMATION TO GENERATE RESULTS

y

DONE? 608

610 N

(UTILIZING THE TEXTURE INFORMATION AND THE RESULTS TO
GENERATE FURTHER RESULTS

l

v 612

OUTPUTTING THE RESULTS [\/

END

U.S. Patent

Aug. 17, 2004

Sheet 5 of 175

610

622

MODIFY

626

ADDRESS?

624

UTILIZING THE RESULTS TO MODIFY THE TEXTURE COORDINATES

RETRIEVING ADDITIONAL TEXTURE INFORMATION USING THE
MODIFIED TEXTURE COORDINATES

623

MODIFY

RESULT?

628

UTILIZING THE TEXTURE INFORMATION TO GENERATE ADDITIONAL
RESULTS MODIFIED BASED AT LEAST IN PART ON THE RESULTS

END

Fig. 6A

US 6,778,181 Bl

620

U.S. Patent Aug. 17, 2004 Sheet 6 of 175 US 6,778,181 B1

700

.

702 \)\
TEXTURE FETCH
704 _,_\j
706 /\/

/

l

COMBINER

Fig. 7

U.S. Patent Aug. 17, 2004 Sheet 7 of 175 US 6,778,181 B1

800
From From From
Setup Unit Raster Unit
(ARGBSTWXYZQ starts/slopes) {push, pop, direction & cover mask) (command writes, palette loads & LFB writas)
Dispatcher 802 .
pixel, triangle and side — <
state management
826 810
834 —~ —\ 1
STW T ‘ Recursion
> STW ST Generator < FIFO
EIFOS " -«
siaisiove | lteralors | Oy rbreet ST) 806
i A A r
Side
814 LOD Unit o[z Band
\ 2x2 Area, dither & <+ 38 #1
anistropic ratio/slope e
Mode
¢ State
816
Kernel Walker
\\ bilinear, trilinear & +
anisotropic
g Memory 818
= < Texture Address /
Reggggt <]
£ 2 EIFO acess modes
iy 820 —
Memory Texture Cache [
. < ™ M sgram & agp textures
= EIFQ raw to color format
828 T~ T =
l 822 -
A Filter Unit P
— FIFQ A chroma black & neighbor, /_j < 808
836 ~—J_+ starslope lterator bilinear, trilinear,)
anisotropic "\
830 H_—— v j“ Side
—> BQBZE,ng RGBZ| CombineUnit e 2|3 Band
838 texture & color +—5[5 #2
startislope | |terators combine l— <|=
Mod
832 —~—_—, T state
XYQ .
—» XYQ | Accumulate Unit
%—S iterat set aside FIFO -+
840 —— starslope | HErALONS accumulate
824 J LFB address & data

A 4

To Pixel Engine Fig . 8

{ARGBXY quad & ZQ basis and deltas)

U.S. Patent Aug. 17, 2004 Sheet 8 of 175 US 6,778,181 B1

aag
Texure ltemtions F"’j
Dispaich
Pixel
Packeak
Eb??*-——b—TB—iYE—k'H-—P—TG—FT?_—bﬁ —&*T&‘l
\ L?Tmp'h‘smliTEA—PH—FT(‘G—PTZ—PN—&T{P
Srnall Trisndles
S—
.
Dispatch -
-
Mﬁm}# ?ﬁm e e
¥

U.S. Patent Aug. 17, 2004 Sheet 9 of 175 US 6,778,181 B1

30
Single Texture Dizpatch (Reration 0) //
currarit pixels rieay pinsks 10000
Composite Texture Dispatch (iterations n to 0) ,&"‘/J

TR

current pixels cument pixels cirant pixate e pixels
Racursive Texture Bispatch {Iterationz n to U with a pop at m & =) 1004

- ypper FeeLssion . ol rEcarEian n
- Aeear i Teghair r

a) beginning dispatch: push valid and pop vold feantinued untl pop packets are available)

puzh continued npapped solinuad - push
waldid pixels valid pixeks woid pirels vaid pixeis wakid pixels

by middie dizpateh: push walid and pop valid (oontinued untid push packets are exhausted)

R

pruzh capliniad popped conlinuad push
welid pixels valid pixets valid pi=els walid pixels watid phiels

) end dispatch: push void and pop valid (continued undil pop packsts are exhausted)

pish cortirugd papped cantirued push
winid pixels valid pixeis valid pixelz valid pixats Wi pExels

Fig. 10

U.S. Patent Aug. 17, 2004 Sheet 10 of 175 US 6,778,181 B1

1100
Recursive Texturing Examples Texture Recursion Push and Pop
Programming

texture# | 7]6]5]4]3]2f1]0
Simple Recursion
1. recursion: push{7.0] |0} 0} 0O]|]O}JO}O]|1]|*
o TI>TO pop{7:0] *10f0|0jJ0}0]0]1
2. recursion & composite: push[7.0] |0OJO]JO|OjO]1]O]*
o T2>TI#TO pop[7:0] *10j0]10]0{0]1]0
3. composite & recursion: push[7:0} |O|JO O }JO|O{O]|1]|™*
o T24TI>TO pop[7:0] *10]0jJ0]J0O|0]O]1
4. extreme com-rec-com: push[7:0] {0|JO|JO0O]|1]|0O]O]O]|*
o T7TH#TOH#TSHTA>TI#T24#TIHTO pop[7:0] *JojJojloOo]j1]j0]O]O
Parallel Recursion
5. two recursions & composite: push(7:0] 0] 0101011]0]™*
o (T3>TH#(T2>T0) pop[7:0] *1ojojojojoj1]1
6. two com-rec & composite: push[7:0] JOjOJOf1|O]|1]|]O]*
o (T5#T4>TD#T3#T2>TO) pop[7:0] *10j0j0JOjof1}]1
7. two reccom & accumulate: push(7:0} JOJO |1 }1]|O]O]|O}*
o (TS>T3H#T2)HT4>TI1#T0) pop{7:0] *10]0jO0|1]O|1}O
8. extreme com-rec-com & accumnulate: push(7:0) {0]J1jO0]Jt1|]O|O]O}*
o (T7HT6>T3IRT2)+(TSHTA>TI#TO) pop[7:0] *1ojojojrjoj1jo
Serial Recursion
9. rec-rec & composite: push{7:0] [0JO0JOJO]1]1]0O]|*
o T3>T2>TI#TO pop[7:0] *1ojoJOojJoO]1]1]0
10. com-rec-rec & composite: push[7:0] |OjOjO[1fjO[1]O]*
o T5#T4>T3IHT2>TI#TO pop[7:0] *101]0]J]O0JtlO]11]0
11. extreme rec-rec & composite: pushf7:0} |1 111]|1]0]0]O]*
o T7>T6>TS5>T4>T2#TI#TO pop[7:0] *I1]1]1]1]0O0]J0O}]O
Parallel Serial Recursion
12. two rec-rec & composite: push(720] OO |1 |1 |1]|]L1]O}*
o (T5>T3>T1#(T4>T2>T0) pop[7:0] [*|ofo]oj1|1}1]1
13. two com-rec-rec & composite: push{7.0] (O] 1]O[1}1}1}O]*
o (T7HT6>TI>TH(TS5#T4>T2>TO) pop[7:0] *1oJOjJOjJLljl}l1]1l
14. two com-rec-rec & composite: pushf70] { Lt |1] 1] 1}JO]O;O/|*
s (TT>T5>T3#HT2)H(T6>T4>TIHTO) pop[7:0] *lof1}j1]1]1]0}0

Notel: accumulates “+” are indicated in the above examples to identify recursion
operations where combine math may or may not be possible because the composite
texture iterations are non-adjacent (see examples 7, 8 & 14).

Note2: recursion pushes may be limited to 4 pushes per bundle, this may resultin a
limit to the extreme recursion-recursion case (see example 11).

Fig. 11

U.S. Patent Aug. 17, 2004 Sheet 11 of 175 US 6,778,181 B1

1200

Example: (T7#T6>T3#T2)+ (T5#T4>T1#T0)

recursion recursion
layer 0 layer 1

4

. recursive push/pop state | push | | push I l pop | [pop I |

1) ! Dispatch pattern to begin
- recursion feedback

T2 T1 T0

2) : Dispatch pattern during
. recursion feedback

3) : Dispatch pattern to end
: recursion feedback

U.S. Patent Aug. 17, 2004 Sheet 12 of 175 US 6,778,181 B1

1300

Example: (T7 > T6 > T3 # T2) + (T5 > T4 > T1 # T0)

4 fecursion < recursion > recursion -
layer 0 layer 1 layer 2 v
Urecursive pushfpop state : R
recursive push/pop state : l pus) op pop push pop pop

1) Dispatch pattern to begin
: recursion feedback

6| 15 | T4 | T3 | T2 | T | TO | T
‘valig-| void | void | void | void | void | void | valid

reg fec

2) : Dispatch pattern during
 first recursion feedback

T3 T2 T1 TO X7
void | void | void | void | valid

rec

3) : Dispatch pattern during :
: first and second feedback :

4) : Dispatch pattern after end : T7 T6 T7
: of first feedback : void | void void
5) : Dispatch pattern after end : T7 T6 T5 T4
» of second feedback : void | void | void | void

U.S. Patent

Aug. 17, 2004

Sheet 13 of 175

US 6,778,181 Bl

1400
\ 1/402 1404 1406
/.)
Pixel State Function Destination
1. pstate_void void pixel everywhere
2. pstate_newtri new triangle dispatcher
pixel iterators
3. pstate_newstate[2:0] new state side-band
pixel engine
4. pstate_itrnum[2:0] texture iteration number dispatcher
pixel iterators
5. pstate_dir[1:0] raster direction (00=down, O1=right, 10=left, pixel iterators
11=up)
6. pstate_push[1:0] raster push (00=null, 01=right, 10=left, pixel iterators
11=vertical)
7. pstate_pop{1:0] raster pop (00=null, 01=right, 10=left, pixel iterators
11=vertical)
8. pstate_mask_pix0,1,2,3[| quad coverage mask st generator
4:0] pixel engine

Fig. 14

1500
\\‘ 1 ;02 1 5)04 1506
H
Triangle State Function Destination
1. tstate_start_x start X & Y address for polygon (used for each | xy iterators
2. tstate_start_y iteration)
3. tstate_start_ w start W deltas for polygon (broadcast to each stw iterators
4, tstate_delta_wdx iteration)
5. tstate_delta_wdy
6. tstate_start z start Z deltas per texture (optional per z iterator
7. tstate_delta_zdx iteration) pixel engine
8. tstate_delta_zdy
9. ftstate_start_[rgba] start R,G, B & A deltas per texture (optional argb iterators
10. tstate_delta_[rgba]dx per iteration)
11. tstate_delta_[rgbaldy
12. tstate_start_[st] start S & T and deltas per texture (optional per | stw iterators
13, tstate_delta_[st]dx iteration)
14. tstate_delta_[st]dy
15. tstate_start q start Q and deltas per texture (optional - stw iterators
16. tstate_delta_qdx overrides W)
17. tstate_delta_gdy

Fig. 15

U.S. Patent Aug. 17, 2004 Sheet 14 of 175 US 6,778,181 B1

1600
Mode State — Per VTA (1 each) Function Destination Unit
TA TD
Dls|{L]K|T|F]C|A
. : : H 11 T{OJE|JA|JL]O|C
ta_control[22:0] Texture iteration and recursive control. slalpolrlnltlmlé
e ta_num_tex[2:0] *
o ta_rec_push[7:1} *
* ta_rec_pop[6:0] * | *
ta_rec_dispatch_id *
e ta_rec_push_limit[2:0] *
ta_dis_raw_cache *
e ta_dis_color_cache *
p{s|{L|k|[T|[F]cC[A
. i I|T{O|E|A|L]|]O]|C
ta_lib_mode[8:0] Linear frame buffer mode. slololrlnlT|mle
e ta_lfb_format[4:0] *
s ta_lfb_rgba_lanes[1:0] *
e ta_lfb_write_swapl6 *
e ta_lfb_write_byte_swap *
D{S[L{K|T[F[C|]A
. i i 1|TlojElA|L|O]C
ta_mop([0:0] Miscellaneous Operation Command slalolelnlT|ule
o mop_flush_tcache *

Fig. 16

U.S. Patent Aug. 17, 2004 Sheet 15 of 175 US 6,778,181 B1

1700

\

Mode State — Per Texture (8 each) | Function Destination Unit

D|S

ta_mode[23:0] Texture filter modes. ls é

K|T]|F
E|A|L
R|ID|T

200
a0 >

e ta_en texturemap
ta_minfilter[1:0]
ta_magfilter{1:0]
ta_max_ani_ratio[3:0]
ta_clampw
ta_lms_dither
ta_lms_2_tcu_sel[1:0]
ta_old_trilinear
ta_wrap_s[1:0]
ta_wrap_t[1:0]
ta_tex_is_tiled
ta_tex_format[4:0]

gsor|v]IVvVIV] V] ®¥| %] *| *| *| #| *| *joor~

APEOAVIV]IV]V
oAl %] %] x| *
zon
a0 x>

o= w
=

ta_lms[29:0] Log of Map Size control.

e ta_lms_min[5:0]
ta_Ilms_max[5:0]
ta_lms_bias[5:0]
ta_lms_lar{3:0]
ta_lms_s_is_larger

ta_lms_zero_frac
ta_lms_odd

ta_lms_tsplit
e ta_lms_mba_mode[1:0]

ta_lms_en_npt

SO *| | |] ¥| *K| ¥| *| *| *

a-w®
rOERVIVIYV
T %] % %
=
zoO
on>

ta_shift_bias[14:0] ST scale and bias.

*

e ta_rec_post_wmult
ta_rec_st_shift[3:0]
ta_rec_w_shift[1:0]
ta_s_bias_log2{3:0] > *
ta_t_bias_log2{3:0] >

L J
*

[]
*

Fig. 17A

U.S. Patent Aug. 17, 2004 Sheet 16 of 175 US 6,778,181 B1

1700
D|S|L|K|T|F|C]A
— . . 1|{Tjo|lE|A|lL|0O]C
ta_detail[16:0] Detail Texturing. sleololrlnltlule
e ta_detail_max[7:0] *
o ta_detail_bias[5:0] *
o ta_detail_scale[2:0] *
D|S|IL|K|T|F|C]A
. 1{Tlo|lelalL|o]cC
ta_npt[30:0] Non power or two textures glolrinlTlulc
e ta_npt_s_max[10:0] *
o ta_npt_s_stride[8:0] *
e ta_npt_t max[10:0] *
D|S|L[K|T|F[ClaA
. 1{T{o|lelalL|o]cC
ta_base_addr0,1,2,3[31:0] Texture base address 0, 1, 2, 3 clolrlnlT|mlc
* ta_tex_agp *
* ta_tex_staggered *
o ta_tex_base_addr[31:5] *
. D|S|L[K|T|F[C|A
ta_tcu_color[28:0] Texture combine color channel SlrtelelAlil sl e
control. s|G|D|R|D|T|M|C
e ta_tcc_a select[3:0] *
* ta_tcc_b_select[3:0] *
e ta_tcc_c_select[3:0] *
s ta_tcc_d_select[3:0] *
e ta_tcc_a mode[1:0] *
e ta_tcc_b_mode[1:0] *
e ta_tcc_c_mode[1:0] *
e ta_tcc_d_mode[1:0] *
e ta_tcc_out_clamp *
e ta tcc_en_min_max *
e ta_tcc_tex_shift[2:0] *

Fig. 17B

U.S. Patent Aug. 17, 2004 Sheet 17 of 175 US 6,778,181 B1

1700

N

ta_tcu_alpha[28:0]

Texture combine alpha channel D
control. s

a—-w
oor
= m R
o>
e L le]
00>

ta_tca_a_select[3:0]
ta_tca_b_select[3:0]
ta_tca_c_select[3:0]
ta_tca_d_select[3:0]
ta_tca_a_mode[1:0]
ta_tca_b_mode[1:0]
ta_tca_c_mode[1:0]
ta_tca_d_mode[1:0]
ta_tca_out_clamp
ta_tca_en_min_max
ta_tca_tex_shift[2:0]

Texture combine color channel b
control. S

o-H®»
ogor
AmR
o>
=

ta_ccu_color[31:0]

ta_ccc_a_select[3:0]
ta_ccc_b_select[3:0]
ta_ccc_c_select[3:0]
ta_ccc_d_select[3:0]
ta_ccc_a_mode[1:0]
ta_ccc_b_mode[1:0]
ta_ccc_c_mode[1:0]
ta_ccc_d_mode[1:0]
ta_ccc_out_mode[1:0]
ta_ccc_out_clamp
ta_ccce_en_min_max
ta_ccc_override_atex
ta_ccc_a_zero
ta_acc_load
ta_acc_add

VIV | %] %] %] % #| %] #| #| %] | #| *j200| *| #| *| #| =] #| | *| *| %] [z 00
aO>

Fig. 17C

U.S. Patent

1700

N

Aug. 17, 2004

Sheet 18 of 175

US 6,778,181 Bl

ta_ccu_alpha|31:0]

Texture combine alpha channel
control.

a-wn

oor

I m R
o>
-
o

ta_cca_a_select[3:0]

ta_cca_b_select[3:0]

ta_cca_c_select[3:0]

ta_cca_d_select[3:0]

ta_cca_a_mode[1:0]

ta_cca_b_mode[1:0]

ta_cca_c_mode[1:0]

ta_cca_d_mode[1:0]

ta_cca_out_mode[1:0]

ta_cca_out_clamp

ta_cca_en_min_max

ta_cca_en_alpha_mask

ta_cca_a_zero

ta_acc_shift[1:0]

ta_color_ar(0,1[31:0}

Color 0, 1 alpha and red.

o= w

gor

OO0 V| ¥ ¥ #| ®| %! ¥] ¥ *| *| *¥| ¥| *¥| ¥ LTOO

A mR
o»-
= Ealic]
Na»| %

e ta_color0,1_a[12:0]

e ta_color0,1 r[12:0]

ta_color_gb0,1[31:0]

Color 0, 1 green and blue.

—

[k B

gor

= moR
o>
—Hrm
200 *| *
a0 >

e ta_color0,1_g[12:0]

e ta_color(,1_b[12:0]

ta_tex chroma_key[25:0]

Texture chroma key control.

a-Hw

vor

N
o> -
=
Ao >

ta_tchroma_t{7:0]

ta_tchroma_g[7:0]

.

-

e ta_tchroma_b[7:0]

s ta_tchroma_mode[1:0]

ta_tex_chroma_range|27:0]

Texture chroma range control.

o-Hw

gor

o mR
o»-
L Rl
0>

ta_tchroma_range_r[7:0]

ta_tchroma_range_g[7:0]

ta_tchroma_range_b[7:0]

ta_tchroma_range_r_ex

ta_tchroma_range_g ex

ta_tchroma_range_b_ex

#| #l x| #f 4| wpHjzOO| x| 2| x| x| 20] *| *

ta_tchroma_range_block_or

Fig. 17D

U.S. Patent Aug. 17, 2004 Sheet 19 of 175 US 6,778,181 B1

1700

ta_chroma_key[25:0] Color chroma key control.

a-w
gor
A m R
o>
Heom
aa»

ta_cchroma_r[7:0]
ta_cchroma_g[7:0]
ta_cchroma_b[7:0]
ta_cchroma_mode[1:0]

aHw®
gor
W oA
or -
~Hm
ao»

ta_chroma_range[27:0] Color chroma range control. Is

ta_cchroma_range_r[7:0]
ta_cchroma_range_g[7:0]
ta_cchroma_range_b[7:0]
ta_cchroma_range r_ex
ta_cchroma_range_g_ex
ta_cchroma_range_b_ex
ta_cchroma_range_block_or

****&**gooi*l*gon

Fig. 17E

U.S.

Patent

1800

.

Aug. 17, 2004

From Setup / Raster

b

Dispatcher
latency = 16
throughput = 1+
{depends on state changes)

'

Triangle FIFQ
depth =77
(tuned for VTA depth)

ST Generator

Sheet 20 of 175

802

/_/ _t stalls

810
S

Tmuspamhersmistmnastemmmle i
processing texturelteraﬁons R

The Dispatcher inserts void gud
out a texture iteration sequence

m voids
t stalls

latency = 10
throughput = 1

!

814

816

latency = 10
throughput = 1

v
Kemal Walker

latency = 5
throughput = 1to 16
(depends on filter mode}

}

Address Unit
depth = 77
(tuned for sgram and
agp texturing)

To/From Mem Ctrl

Data Unit
latency = 4
throughput = 1

latency = 10 to 200
throughput = 1

To Pixel Engine

'

A

820

J

latency = 10
throughput = 1to 16
(depends on filter mode}

822

'

ine Uni
latency = 10
throughput = 1

804
~

!

824

T

Z F Parameters

Accumulator
latency =5
throughput = 1

l___

Recursion
EIFQ

latency = 0
throughput = 1

I

A

T stalls

I stalls
O bubbles

Obubbles .
@ colapse ¥

@colapse :
iexturing
i stalls

I stalls B
msstted inte the dispatch
texdurs Haration.

Fig. 18

US 6,778,181 Bl

U.S. Patent Aug. 17, 2004 Sheet 21 of 175 US 6,778,181 B1

1900
Side-Band Connection
Data / Addr & NewState
Arithmetic Pixel State 'L:jc:t‘;e Srﬁ:‘” - -
Pipe Pipe pstate_newstate -sample- -sample-

] stall

1906

E b 1904 wren (" ded

1902 \ 4 4
Fig. 19

»

U.S. Patent Aug. 17, 2004 Sheet 22 of 175 US 6,778,181 B1

2000
Arithmetic Pixel State . . Side-Band Connection
Pipe Pipe per iteration a/b state Data / Addr & NewState
2006
Active Shadow
newstate a/b[7:0} a/b[7:0] Bl ©
iteration# = 2
2010 stall
R =
2022 T ded)
........ a_ ...
b
a - a
S0 e @)
address 12 aeeeee- a ...
2004
a
Y | N e T g write
\ b address
math j¢————p—n—o S e——{I6 - B
........ a-----...‘ wn‘a
- data
b] I? . LIy i:
= =)
© o
syncram
v v ™\C 2005 v 4

Fig. 20

U.S. Patent

2100 /'\

Aug. 17, 2004

Sheet 23 of 175

q 2102

US 6,778,181 Bl

Upstream Arithmetic Module

‘Per-Pixel Math
"

ol

Per-
Pixel
State

<src>_sb_newstate
<src>_sh_itmum

£ L=
E K] side-band

connection
from Dispather

dis_sband_adr{8:1}
dis_sband_data[31:0]

<dvs>_valid
<dvs>_stail
<dvs>_<*>

<src>_pstate_<*>

dvsshake module
stall decopuler,

test and debug block

2104 j

<dvs>_dc_valid
<dvs>_dc_stall
<dvs>_dc_<*>

<src>_de_pstate_<*>

«<dvs>_stall

sshake_<reg1>_<fiekdx>
sshake_<reg2>_<fieldy>
sshake_<reg3>_<fiekiz>

.|

Per-Pixel

State

Fig. 21

sideshake module

reg1

. * Units recieve sideband state at the tap

: of their pipe.

| * Upstream Units stall their last two

: stages in lock-step. :
| * State used deep in the pipe is sampled :
. atthe top and piped within the pixel

. state pipe.

" * Grey flops lock-step stall together.

Downstream Arithmetic Module
(stg, lod, ker, 1ad, fit, com, acc}

U.S. Patent Aug. 17, 2004 Sheet 24 of 175 US 6,778,181 B1

2200 vta_stgen.vsd From Triangle State FIFO
[Step | [Step | Step
Y Y v
——=—1 ———n ———n
| | I
Iteration Unit SOW00] TOWO00] oowos |
accumulate gradients | 1 |
push, pap & wafk | i I
| | | ! | |
| 1 | | | |
Lo ! Lo L
N Y v ¥
Quad Gen I [Quad Gen l | Quad Gen.
Y \ 4 Y
sSowo1 TOWO1 oowD1
SowW10 | sowmn Towio | town oow1a | oow11
S,T Generator > > >
fomCC delta SOW delta TOW delta OOW
+ 1s.12frac+ 1s.12frac+
. 1s.7int.43frac 1s.15int.35frac
. ELd
TA_W_SHIFT
l int2float | | int2float l ------
I I
. | v 4.0 | .. | 4.8 —l Reciprocal
delta S delta T w
[| _
Muttiply l [Multiply **: controlled by dispatcher
recursion enable bit,
TA_REC_POST_WMULT,
and TA_REC_ST_SHIFT as
described in programming
spec.
TA_S_BIAS_LOG2 -~ --- 0,27, 22 l [40,22, .22 } ---TA_T_BIAS_LOG2
R £ 4. .7 4.4 .1 4 T4
A v
w_is_neg
Slms Saddr Tlms Taddr (used for clamp of s,t when

Fig. 22

TA_CLAMP==1 and clamp of
To ST Scaler, LMS calc. LMS and AR)

U.S. Patent Aug. 17, 2004 Sheet 25 of 175 US 6,778,181 B1

2300

From Triangle pixel quad
State FIFO SOwW, TOW & OOW
l l * A A [¥ ¥
SOW, TOW, O0OwW stw vw 1w
lterators
accumulate gradients

push, pop & walk

A 4 A A A h A

SOWl TOW, OOW siw | siw Yw Uw Vw | 1w

Quad Generation siw | stw vw [vw w | 1w
Add deltas to upper left pixel

N A

OOW Reciprocal il
1/x lookup, iterpolate & wlw
multiply against W

| T3

N N N N
w w w w
o o) o
oo o)) s N

SOwW, TOW I i
Multiply by W s | s vl

8 multiplies

L Lo

To ST Scaler S&T

Fig. 23

U.S. Patent

Aug. 17,2004 Sheet 26 of 175 US 6,778,181 Bl

2400
From Triangle State FIFO
Parameter Parameter Parameter
Start Value Delta X Value Delta Y Value
Accumutate Array Delta X Array Delta Y Array
Push1, Push2, Accum
10 10 10
11 11 11
12 12 12
13 13 13
14 14 14
15 15 15
16 16 16
7 17 17
syncram syncram syncram
N & itr_dx_dy_sel
i itr_accum_sel
+- & itr_add_sub_sel

v
pix 0
(upper left)

v
pix 1 pix 2
(upper right) (lower left)

Fig. 24

pix 3
(lower right)

U.S. Patent Aug. 17, 2004

2500

W Reciprocal

Sheet 27 of 175

US 6,778,181 Bl

0 is mapped to lowest expressable
value, so that 1/C is defined

---2 512x20 ROMs with
subtract to derive slope?

---change slopes to be negative

[20 Lookup Value

slope[9) is used to mux bypass after
9x9 unsigned mult

Round, subtract offset

1/(80000) = 80000 -> 40000, exp++
1/(800Q1) = Tffff
V/(FFEfF) = 40000

Shift right if out of range

6.19 exp mantissa

mantissa leading 1

W = O.mantissa * 2% {exp - 15)

range = [(0.100...00* 270 - 15)), (0.100...00 * 2°(48 - 15))]

/W From W Span Iterator
‘48 16.32 [-4k, 60k), 0 <= x < 2, clamped after iterator
i [Clamp to 1 if negative or ¢ l
* 48 unsigned 16.32 [1, 60k)
Integer-to-Float, leading |
BXXX_XXXX_XXXX maps to exp=0 mant=8xxxx
0001 _0000_0000 maps 10 exp=15 mant=80000 {1.0)
i 0000_0000_0002 maps to exp=46 mant=80000
1 0000_0000_0001 maps to exp=47 mant=80000
/W = 0.lmantissa * 2*(16 - exp)
A 6 Exponent A 19 Mantissa, plus implied leading *1° in bit{19)
l? Mantissa (18:9}
i2 P PR] .
i3 ROM
r N .
A 9 Mantissa [8:0] t 10 Stape ;
i4
Multiplier
PROD(17:0])
18 unsigned
This accomplishes: [
. 1) round off to PROD([18:9]
is 2)2'scomplement
1
~PROD{4]
1 19 .
“”T [8:0] 19°h40000
i6 Ny
010000 (W=1.0) 100...00
tpersp_st
6 Exp [0.48} 19 Mantissa
L 1
w

Fig. 25

U.S. Patent

Aug. 17, 2004

Sheet 28 of 175

2600
S =(S/Wy*W, T=(T/W)*W
From Iterators
{ 1
S/W /W W, From Reciprocal
6.19 exp.mantissa , 0.5 <= W <=7
48 1.15.32 48 1.15.32

W = O.mantissa * 2*(exp - 15) .
range = [(0.100...00 * 270 - 15)), (0.100...00 * 27(48 - 15))]

Integer to Float Integer to Float
non-normalized non-normalized
.mant{19:0] * 2%(exp - 12)
| mant. range [-1/2, 1/2) L
A Sexp 420119 A5exp 420119 6 Exponent 4 19 Mantissa, unsigned
[0,28] 2’s comp. mantissa [0,28] 2's comp. mantissa [0.48] leading 1
6 (0,481 4 61048)
I 1
A4 20 signed x 19 unsigned T 20 signed x 19 unsigned
Multiplier Multiplier
£ Texp A 392’s comp. mantissa A Texp A 392’s comp. mantissa
[0,76] [0,76] .mant{38:0] * 2*(exp - 27)
mant. range [-1/2, 1/2) 2°s comp.
exp range [0,76]
up to 20 leading 0’s
l I or 21 leading 1's
Float to Integer Normalize Float to Integer Normalize
Clamp mant Clamp mant
| Pos. i Neg. Int. Frac I exp 2'scmp | Pos. Neg. Int, Frac] exp 2's cmp
;' 1 ,' 1 8 4 A7 12 1 1 8 4 ,-v 7 12
L] | i L] 1]
S, to address gen. S, to LOD T, to address gen. T, to LOD
calc. cale.

Integer-to-Float, sometimes leading 1/0:
TXXX_XXXX_XXXX maps to exp=28 mant=7xxxx
8XXX_XXXX_XXXX maps lo exp=28 mant=8xxxx
0000_0007_ffff maps to exp=0 mant=7{fff
fHft_{ff8_0000 maps to exp=0 mant=80000
0000_0000_90001 maps to exp=0 mant=00001
fT_{ff_ffff maps to exp=0 mant=fff{f

Float to Integer;
Shift left by (exp), sign fill MSBs, zero fill LSBs

Normalize:

References 32 MSBs of 39-bit mantissa input

Shift left up to 20 places, add 20 to exp for <<0, add 0 for <<20
Output: O.mantissa * 2exp - 47)

mant. range [-1/2, 1/2) 2's comp.

exp range [0,%6]

Clamp Pos. and Neg. are passed on, but address gen. still needs to look at MSBs of 8-bit int for pos. overflow

Fig. 26

US 6,778,181 Bl

U.S. Patent

2700

via_stg_wmult.vsd

Recursion
delta SOW

*

112
sgn.frac

1.8.43
sgn.int.frac

Aug.

17, 2004

Sheet 29 of 175

US 6,778,181 Bl

S=(SOW}*W, T=(TOW)*W

Tterator
SOwW

51

1.7.43

sgn.int.frac

20420 bit add, 31 bit Isb bypass

{28%0. 0. 1, 22bx}: exp=0. mam=0{X..X
{700, 0. 1, 22bx, 21x): exp=21, mant=01X...X (1.0)

Integer to Float
non-normalized

W, From Reciprocal

W = 0.lmantissa * 2*(exp - 18)
range: [(0.100..00 * 20 - 18)),

(0.100...00 * 2734 - 18))]

{0. 1, 22%x, 28%x}: exp=28, mant=01X.. X |__—1
128b1...1, 1,0, 22bx}: exp=0, mant=10X...X
{1.0, 22bx, 28'bx): exp=28, mant=10X... X
Isign.23frac * 2°(exp - 20)
maniissa range: {[-1,-1/2) | {1/2, 1)) . N
2 issa 6 Exponent {implied 1, 22 mantissa}
Isign.23frac {0.54) unsigned, range [1/2, 1)
6 exp
[0.54]

24 signed x 23 unsigned

.

controlled by dispatcher

recursion enable bit,

SST_TA_POST_—]
PERTURB_LMS

Booth, Wallace TA_REC_POST_WMULT, and
TA_REC_ST_SHIFT as
47 2"s comp. i described in p ing spec.
Isign.46frac * 2°(exp - 38)
1.0*1.0 =0.010...0 * 2(40-38)
Float to integer,
clamp to +-256 wraps
Overtl Isign. 8wrap+mirror.
verilow i N
h | tint.8rac 4frac Al3 Recursion
Allows LMS tsign delta S
range of (-9, 23) .12frac elta
32 » TA_S/T_BIAS_LOG2Z
SST_TA_POST_
PERTURB_LMS

f Isign.9wrap+mirror.
1 lint.8frac 4frac
33

consolidate MSBs

into OV
Overflow L Isign.3cxira. bmirror.
1 1int. 8trac
24
to LMS calc. to KER

Fig. 27

_____..|_

This part is implemented
in the LMS module so the
timng constraints are easier
and consolidate can be in
parallel with Ims calc.

U.S. Patent Aug. 17, 2004 Sheet 30 of 175 US 6,778,181 B1

2800

{s,t}_{00,01,10,11}_ov_pos Indicates that the coordinate was positive and of magnitude
greater than the 3.1.11.8 value can express. This is can be
used for positive clamping later, though it is not the only
cause. The mirror bit must be referenced for pos. clamp
when not mirroring. The +1/2 can cause pos. overflow and
clamp, and is especially sensitive to small map size.

This bit does not include

{s,t}_{00,01,10,11}_is_neg Indicates that the coordinate was negative, for use in
clamping later. Note that the 3.1.11.8 number is unsigned.
The -1/2 can cause underflow and clamp, and is especially
sensitive to small map size.
{s,1}_{00,01,10,11}_3_1_11_8[1 | Three extra MSBs for far kernel walking, 1 bit for mirror,
9:0] 19 bits for integer and fraction of coordinate. In the
perspective of 0.0 to 1.0 spanning one whole texture, the
decimal point is after the mirror bit (4.19 int.frac).
3_1_11_8is extra_mirror_int_frac for a 2kx2k map. Fora
16x16 map, it is interpreted as 3_1_4_8 7,
extra_mirror_int_frac_dontcare.

This value is positive unsigned.

*** how are non-square maps expressed for the smaller
dimension?

Fig. 28

2900

{s,t}_{00,01,10,11}_Ilms_exp_x[| Exponent ...

x-1:0]
{s,t}_{00,01,10,11}_Ims_mant_x | ... and mantissa of coordiates for use in LMS. This may
[x-1:0] include overflow bits dropped from the s and t used for

address generation.
*** determine precision needed, format and exponent bias

Fig. 29

U.S. Patent Aug. 17, 2004 Sheet 31 of 175 US 6,778,181 B1

LME Calculation : Anisatropic Area
References

SR T LS O S LUV, | P

g—— Dl

oTit

i @

BS11I0—. ® oSy -1 Ky

U.S. Patent

Aug. 17, 2004

816

Sheet 32 of 175

ker_stall sent
upstream from the

US 6,778,181 Bl

kernel walker. it's a
combination of
From LMS Circuit 4 'ad—s‘ff_,':kﬁ,;eme'
State {to Ctl)
SST_VTA_MINFILTER[2:0] ' Either LmsFrac, D
SST_VTA_MAGFILTER[2.0) AniSteps DetailFactor From LMS Unit
[3:0) orTexelArea | TTTTTTTTeTTUeTeTeetY
.l | | ker_stall
pixel
state dSdC dTdC
AnRalio | 1B 18 ""‘:Zécu S00
s l r l] l 3208
D DVS decoupler le F[> OVS decoupler

: T e s
f . Per-Texel Pipe
H T N

l ’ ool L)

misc :
state H
R
Kemet Walker deltaS: 3202
control and state
L machine Walker 3204
3210 ’ Accum i ‘ ’
} b T~ — 3206
ims2tcu | AniRatio ker2tad l————
tad_stall 2.8] Kker_s ker_t
‘ LMS pixel ker2fit l
l state l

To Texture Address Datapath (TAD)

Fig. 32

U.S. Patent Aug. 17, 2004 Sheet 33 of 175 US 6,778,181 B1

3300 3302
Graphical
. Representation of
Anisotropic Ratio San’:/lpél\:rﬁ?:ll;t:sand Anisotropic Area
i (8,T center) _and 22
5 neighborhoods
« 3304
: _—
I .
1.0 :
‘ + + o— 3306
1.5
L L J
2.0
ol o0 |0
25 . .
IREE:
3.0 .
40 §

‘ dotted rectangle is
Sample magnitudes will a'Ways sumto 1.0 anisotropic areain ST space

Always use even number of samples solid squares represent
(anisotropic steps) for AR>1.0 2x2 neighborhood

Fig. 33

U.S. Patent Aug. 17, 2004 Sheet 34 of 175 US 6,778,181 B1

3400
/- 3406
. \'\'.' J
T g
Center S, T for
High-Res MIPMAP ¥
’/ ’,',
A g
neighborhood 1 V)’ s

U.S. Patent Aug. 17, 2004 Sheet 35 of 175 US 6,778,181 B1

3500
0,0
- ®
! E
3502
e 3 Surfaﬂﬁ dimension
Fig. 35
3600 3602
saf1)glylelieicd datod ig] »
= =22 T EEEEZ
- 000
(01
02
003
504
L]
= 005
= .
= 006
0o7 .
00
009

U.S. Patent Aug. 17, 2004 Sheet 36 of 175 US 6,778,181 B1

3700
o J
raw S,T data : | s |r19l Lyl T | Ts [Ta 1 15 [T L1 rm’]rs ,r7 Ir6 ‘r5 Jr4 ‘r3 |r2 |r]]r0—|

maplevelll:lslml1 iy | g i

[i [|

o s Jio [[[Jio |6 o 516 [0 16 6]5]
i Ji i i [Jio [0 [[[[n 16 6 [6 X

Wi Ju o [fs e s [s 6 [6 [6 |6 P<TX]
b1 [Jio 6 J5)6 [6 8 [6 |6 PXXEX]

I

map level 9 : I s |m | ig |1, [

map level 8 : I s |m [i i

...
o
-
[5]
-
o
o
o
-
e
o
o
+h

map level 7 : l $ Im [

15

povts, CEL T e e e KRR
mapteve 3 (5 T Ti [[[5 []6 [5 [6 [2 1o IRDORDOADAN]
mapteve 2. [+ T i Tu [T8 [6 1 [6 &[5 [6 DO
mapeve 1 (<o i[5 [T5 [T5 [2 & T6 DOORDODIXIAN]
maptevel 0 [5 T T Tt [T2 [6 16 [[PO

3704

f
E
map level 10:{ s [m iy [iy |i
|
K
|
i i
AL
[
|

3708 Fig. 37

U.S. Patent Aug. 17, 2004 Sheet 37 of 175 US 6,778,181 B1

ta

£
S —
s "

WL 01E11001
L01111010
¥ 013111811
¥.01111100
C0LE11101
.D1111110

3800

. 01711113
XL RO0O00400
LEO0O0003
H.I00040010
=X . 100001 %
=X, 100001400
= XL LOQ00140L
‘ X.10000110
e oS X.10000111
p % RS i e paacd B x M sissosey o .
oD e S e O o '
e K e R tf, ... tf,
5 1 £ o o pb T3 D O o = i I
Adddddloooccocooo | N
g el A A A 09D oD O oD
B | e :
ﬁfﬂr4rﬂHr4r4ﬂ(§ﬁ5ﬂ§JOfJﬁ}J'h
L???????ﬂﬁ”ﬂﬂ”ﬁﬂfﬁ
AL S EE
Fig. 38
...... }
sa
39@%
T - X0101.11111133
= KOG D00a0GG0

Ve ¥0110.111111%%

T-XEI11.90000050

)
'S
h ‘!I
i 3
ll v .[
]
- —~ 'O
— i — []
— o Lo]
L L] “n
A o F!g 39
i — § ¥
t = B B =
v a — L ool
F oo EE A
% T3 — i
— i o
EL A N

U.S. Patent Aug. 17, 2004 Sheet 38 of 175 US 6,778,181 B1

4000

4006

~E0L0E 107130111

4008 —_ ~X0110. BOGA00GH

E01179.13311111%
TTe-X1131., 00000000

4008 \\

[
bilinesr
: sumples
G Y
i ? : i \ h
N H] g “
i H ’Ii \\
ta ;5 § : g 4010
¥ =] r E \“‘\
na oo
. o
58 48 = 4002
w2 Ex] -—; k“ 4
LA aoo bilinear
ol o ;—é samples
4 ,

Fig 40

U.S. Patent Aug. 17, 2004 Sheet 39 of 175 US 6,778,181 B1

4104

4102

Fig. 41

U.S. Patent Aug. 17, 2004 Sheet 40 of 175 US 6,778,181 B1

200
4300

Wrapping Mirroring

Fig. 42 Fig. 43

U.S. Patent Aug. 17, 2004 Sheet 41 of 175 US 6,778,181 B1

Clamping Clarp to Black

Fig. 44 Fig. 45

U.S. Patent Aug. 17, 2004 Sheet 42 of 175 US 6,778,181 B1

AR =1, s_is_larger=x 4600

r 2K x 2K

a4200

1K x 1K

>
—
—_
>

base address
base address
base address
base address

LMS 11
LMS 10
ILMS 9
LMS 8

Fig. 46

US 6,778,181 Bl

Sheet 43 of 175

Aug. 17, 2004

U.S. Patent

4702

(\R

4704

s_is_larger =1

=2’

AR

=0

ger

S12K x IK

1K x 2K

_|_H

AT XNATIS

s 1s_lar

=2,

AT XA

-

SSaIppE aseq
8 SW1

ssaippe aseq
6 ST

ssaIppe aseq
0l ST

$SaIppE aseq
[T SWT

SSIPPR aseq
8 SN
SSOIppE 358q
6 SWT

SS2IppE 5B
0T S

SS3IppR aseq
11T SW1

Fig. 47

U.S. Patent Aug. 17, 2004 Sheet 44 of 175 US 6,778,181 B1

4800

16 bbp, AR = 1
LMS 5
LMS 4
LMS 0
T LMS 1
LMS 2
LMS 3

U.S. Patent Aug. 17, 2004 Sheet 45 of 175 US 6,778,181 B1

4900
32 bbp, AR =1
LMS 5
LMS 4 | _LMSO
TTLMS |
T LMS 2
~LMS 3

U.S. Patent Aug. 17, 2004 Sheet 46 of 175 US 6,778,181 B1

5000
8 bbp, AR = 32, 64, 128, 256, 512, 1024, 2048 LMS 3 /

LMS5
LMSO

LMS1

LMS 4 F|g 50 LMS 2

32 bbp, AR =2 /

LMS 5

LMS 4

TT—LMS 3

— LMS2
LMS 1

—LMS 0

Fig 51

U.S. Patent Aug. 17, 2004 Sheet 47 of 175 US 6,778,181 B1

5200
5300

32bbp, AR =8 16 bbp, AR =32, 64, 128, 256, 512, 1024, 2048

- LMS4

U.S. Patent Aug. 17, 2004 Sheet 48 of 175 US 6,778,181 B1

5400

4 bbp, AR = 32, 64, 128, 256, 512, 1024, 2048

LMS 5

LMS 4

Fig 54

US 6,778,181 Bl

Sheet 49 of 175

Aug. 17, 2004

U.S. Patent

|

€

Fig. 55

cctifo output buffe

4
o
[Tp]
w0
s s s fiers -
o > PEA > pIeA > PIeA >
. &
lo:1zlos footloss [o:czhsans’ | [Torhisans e
_ou _N_QM lo:o1)on lo:c)is lo:z]11s
i ——
: . N
[o:01]10 i > - »
. 0:1Jjear [0:51]1eAd
H_w..__mu_m — ooras s
. p_m [o:01]zn o Z
Mm,“m_mw > ooiles | & e
N —_— - » k=) » N =}
[oEloswy ——n [o:01len 5 [loodos | ([0t 3
[o:Elisw ——» & wgsw| s (lootlen {o:01lon
elsw — o & T g [loolns [o:01]11s
[o:€lesw] —w 3 wgswy “ lo:01]m [o:01]1n
Q . v N o 7
loghel ——» £ gsw [o:01]zts . [o:01]z1s .
= lo:otlen | 2 [lo:01]zn
8 [a:siient —— .5 ool | £ llootlers
S 0:g1]jear : g : > .
%\V g |t foorlen | 8 |lorotlen [o:sTIogroYsEw
b o
em o =
._owhw_ 8 % |1e81e[7sis =
[o:1]sdeam —— s [0 1Jsdem 2
1 1112 7. QU——— . »
Lwa_@m_lxu“ I [o:1]ydeam | [o:€)ms
T Pt xa1 [ocIgs
~d [0:€lps
us i du —— N B
wew—s—ydu Lo:21oss lo:2)ogs o = lo:¢lows
xew 13du — lo:Llop {o:¢)op » m [0:£10708d
apus—sidu wdus | [lodos g
’ [o:Ll1p < lohp °
lo:L]as S |louas I rPerpp—
[o:L]ep e | [oilap . — >
S loe]gs o odgs g STEITPP
8 loden | & [lotlep | 3 [s:1¢d1appe
o H s
< 3 E _/ [s:1¢lomppe
[] ssedfq o &5 N >
Q.Y | [}ssediq {] ssed4q [] ssed&q v

5506
“f
5510

‘ phys addrs to raw cache

US 6,778,181 Bl

Sheet 50 of 175

Aug. 17, 2004

U.S. Patent

—_

5600

ovsl,msl,sl, ovs2,ms2.s2, ovs3,ms3,s3,
ovt3,mt3,t3

ovtl,mtl,tl

ovs0,ms0,s0,

ovt2,mt2,t2

ovt0,mt0,t0

= \Toqilgmoss Y % Mo >
b . . 5 [[oo1Igmts
s [TotT1]grwos) S [loongun "
—————» = | [0:L]en gz
v [lo:Llgoeys g
3 |lorigmmoss % looilous—*
S |lotawosy 2 Moorloun
» = |lofJesey 1 F
v [TorL]zoeys £ |
L ° |
5 [Tom]rmwoss Z loonmas
s | [os11]1rwos s (lootlpmm
£ | [0/]1ov1p B
vV [TorLTroeys g
3 [Tomromoss 71 < [[oorlgms
| [o-1]omwos o [Tootlown
£ [[oz]ooen g
v [To:Llooeys g
¥
2
[Jxew™) “[Jxew—s M. >
S R - [0:S1]prear
usdu S
T
— (="
Z

lo:s1]preAl

Fig. 56

US 6,778,181 Bl

Sheet 51 of 175

Aug. 17, 2004

U.S. Patent

57Q0

s3_isll

!

—~
O =~
Vv
i} 1} A
O 4 O A B
O O d -
[0:01]yurs \
<
<£L
- o <>
[0:1]c0qnss
[0:01]7u1s
Hal
B E I .
R . nss i . nss
[0:1]209 _JL [o:1]z19
[0:01]13uts
[0:1]sdeism—<» M —<—
[0:1]10qnss

s2_1sl1

[0:01]0yuts

y
sO _isl1l

sl 1sl1

[0:1]¢zanss

Fig. 57

U.S. Patent Aug. 17, 2004 Sheet 52 of 175 US 6,778,181 B1

5800
' 5804 | 5820

- 5824

A R T
o e i

Fig. 58

U.S. Patent Aug. 17, 2004 Sheet 53 of 175 US 6,778,181 B1

5900
T S[2)=0 S[2]=1 S[2]=0
’T - 5820
0
T{2]=0 !
| 2
3
0
1 5910
T{2}=1
2
3 ~ 5810
0
TI21=0 :
I[2}= y
3

U.S. Patent

6000

[21:0]

ref_st0

Aug. 17, 2004 Sheet 54 of 175 US 6,778,181 B1

[21:0]
[21:0]

" st1[21:0]
ref st2
ref_st3

ref stl

inc s,t
separately

—

+1 +1 / +1

y

A A 4
X,y to X,y to X,y to X,y to
physical «— physical [« physical [— physical [¢— base ad<'1r,
address address address address surface attributes
i ;
v v
addr0 addrl addr2 addr3

Fig. 60

U.S. Patent Aug. 17, 2004 Sheet 55 of 175 US 6,778,181 B1

6100

U.S. Patent Aug. 17, 2004 Sheet 56 of 175 US 6,778,181 B1

6200

ST

Generate 2x2 neighborhood,
wrap, mirrar, clamp

generate cacheline neighborhoods Sfrac,

Tfrac

l | | |

CAddr CAddr CAddr CAddr
EE+ EO+ OE+ OO0+
\ . . A Info addresses
Valid Valid Valid Valid (LSBs)

‘ # * A 4 \ 4 4 valids

Other OO v v
cAddrs

Mapping 4 texel

A A A

Common Addr
Compares (6)

Addr «dc Adc Addr
+ + + +
Valid ‘ali Vali Valid
+ o+ 4+ o+

UniquevigUniq Unique

vy v ¥ 2R
Per-Texel

Cache Location
Mapping Geperation
- Stall — Tag Logic ™ info —» (7 bitsitexel-

One valid bit, four cacheline
——» bits, and two ST bits (eight
—» shared over four pixels))
—> {can we make this

smaller?)

716
address
bits

'

Fig. 62

U.S. Patent Aug. 17, 2004 Sheet 57 of 175 US 6,778,181 B1

TR R B
T e e el
R e a2 ae

LTagE ; Qéé

U.S. Patent Aug. 17, 2004 Sheet 58 of 175 US 6,778,181 B1

6400
\ 256-bits/32-bytes
from memory 32-byte addr: 0 32-byte addr: N-1
\ Y
A
°
DXTn surface
32-byte addr: N
®
Fig. 64
6500
s k\ /4 4
/A .
4x4 pixel units DXTn surface

(64-bits each) ¢

Fig. 65

U.S. Patent Aug. 17, 2004 Sheet 59 of 175 US 6,778,181 B1

6600
R\ /ﬁ
\/ Y []
4x4 pixel units DXTn surface o
(128-bits each)
° : L4
Fig. 66
6700
64 bit (8 byte) units

individual texel
NN /

|
v

increasing T

d
<

63:0 127:64 191:128 255:192
1sbst=0 1lsbst=1 lsbst=2 1sbst=3

.
>

increasing S

Fig. 67

U.S. Patent Aug. 17, 2004 Sheet 60 of 175 US 6,778,181 B1

6800

color cache
alignmiznt

¥ | «
0 1 0 1 0 1 0 1

0 1 0 1

0 1 0 1
T AN\
. Y
. 256 bit read atom

64 bit (8 byte) units

Fig. 68

6900 1sbst=0 1sbst=1

\\\\\‘ 63:0 127:64

increasing T

191:128 255:192
lsbst=2 lsbst=3

»
Ll

Fi g. 69 increasing S

U.S. Patent Aug. 17, 2004 Sheet 61 of 175 US 6,778,181 B1

7100

63:0
7000 lsbst=0
exactly 8 wide
“—> =
g 127:64
4 g lsbst=1
0 1 5 =
R
_ 2 3 191:128
B v lsbst=2
2 0 1
g
2
8 2 3 255:192
¥Y—_/ lsbst=3
. 256 bit
read atom —_—
. increasing S
Fig. 70

Fig. 71

U.S. Patent

7200

S

arbitrarily tall

Aug. 17, 2004

<+—>» 42 orl wide

0

Fig. 72

256 bit
read atom

Sheet 62 of 175 US 6,778,181 B1

7300

.

increasing T

127:0Q 255:128
lsbst=0 lsbst=1

»
»

increasing S

Fig. 73

U.S. Patent Aug. 17, 2004 Sheet 63 of 175 US 6,778,181 B1

7400

\‘ 7500

S

8 texels or wider
A o 127:0
0 1 0 1 o0 lsbst=0
£
£
= 5
8 2 3 2 3 £
:-E‘ 255:128
g lsbst=1
B 0 1 0 1 v
<
—_
2 3 2 3 increasing S
v
I Fig. 75
256 bit
read atom

Fig. 74

U.S. Patent Aug. 17, 2004 Sheet 64 of 175 US 6,778,181 B1
7600
\‘ 7700

4.2,0rl \
texels wide

> wrapst [3:2] = 00
4 wrapst [1:0] = 00 : no wrap
0 . 0 1 2 3 wrapst [1:0] = 01 : 2 tall
256 bit wrapst [1:0] = 10 : 4 tall
_ 2 read atom
E]
=) Fig. 77
g 0
2
™
2
4

Fig. 76

U.S. Patent Aug. 17, 2004 Sheet 65 of 175

7800

\

wrapst [3:2] = 01

wrapst [1:0] = 00
0 1 wrapst [1:0] = 01
wrapst [1:0] = 10
2 3
Fig. 78
7900
wrapst [3:2] = 11 // exactly 4 wide
wrapst {1:0] = 00
0 wrapst[1:0] = 01
wrapst[1:0] = 10

Fig. 79

US 6,778,181 Bl

: no wrap
: 2 tall
: 4 tall

: no wrap
: 2 tall
: 4 tall

U.S. Patent Aug. 17, 2004 Sheet 66 of 175

8000

.

wrapst [3:2] = 10 // exactly 2 wide

wrapst [1:0] = 00
0 wrapst[1:0] = 01
wrapst [1:0] = 10

1

2

3

Fig. 80
8100
wrapst [3:2] = 00

wrapst{1:0] = 00
0 1 wrapst [1:0] = 01
wrapst [1:0] = 10

Fig. 81

US 6,778,181 Bl

: no wrap
: 2 tall
: 4 tall

: TIO wrap
: 2 tall
: 4 tall

U.S. Patent Aug. 17, 2004 Sheet 67 of 175 US 6,778,181 B1

8200

.

wrapst[3:2] = 11 // exactly 4 wide

wrapst[1:0] = 00 : no wrap
0 wrapst [1:0] = 01 : 2 tall
wrapst [(1:0] = 10 : 4 tall
1
Fig. 82
8300
wrapst [3:2] = 10 // exactly 2 wide
wrapst[1:0] = 00 : no wrap
0 wrapst [1:0] = 01 : 2 tall
wrapst[1:0] = 10 : 4 tall

Fig. 83

U.S. Patent

Aug. 17, 2004

Sheet 68 of 175

Texels, including
valid bits/texel

US 6,778,181 Bl

i 8400
tc_sFrac,
tc_tFrac PO P1 P2 P3
I l J' J' l J' R 8404
Itc_kerzﬂl u A y 9 /
tc_pstate| tc_scale] :
tc_stall °-P Chroma-Key vtaTexChromaKey
“_' viaTexChromaRange
¢ 1 ctrl block per quad,
4 chroma per quad,
Lerp Lerp 16 bilerps/scale/
8402 I wl(a-b)+b w(a-b)+b accumulates
\ per quad
control block | vWeigh
(and pipe signals) t 1
Lerp
w(a-b)+b bilerpValid = OR of all
: | X four texelvalids for this
scalefactor- bilerpValid color channel.
8 ; Color Fit
Mult ' olor Filter
| (X4 per pixel - RGBA)
- 8406
load/ .
fi_ims2tc acoate——>] 17bit Accumuator | -— Pixel Fiter
u : (X4 per 2x2 quad)
[16:8) per 2x2 q
fit_valid lﬂt_pstate

8410

U.S. Patent

o

8500

B BBBBBBBB

Pl 10110111

BBBBEBBEBE

BBBEBBBEBO

BBBEBBBBBOO

000000000CO0O0

BBEBBBBBBOCGOO

BBEBBBBBBO0OOOCO

00000000000000

BBBBBBBBOCOOOOO

Aug. 17, 2004

Sheet 69 of 175

A AAAAAAARA

x(1-w) 0100100

0

AAAAAAAA

0000000

000000O00

000000000

AAAAAAAAOQDQ

00000000000

000000000000

AARAAAARAAOQOOOCO

000000000000 00

0

US 6,778,181 Bl

+
AABRAAAA
BEBEBBBEBE
BEBBBBBB
BBBBBBBBO
AAAAAAAAOQO
BBBBBBBBO0O0OO
BBBBEBBBBOOOO

AAAARAAAAAOOOQOO

BBEBBBBB000QOO

N Mo

XKXXXXXXXXXXXXXX YYYYYYYYYYYYYYYY Z222Z222222Z22222272

Fig. 85

U.S. Patent Aug. 17, 2004 Sheet 70 of 175 US 6,778,181 B1

8600

sample
location

A=(2B+2C)/4 A=(2B+C+D)4 A=(B+C+2D)/4 A=(B +2C +D)/4

A=(2B+20)/4 A=(3B+C)4 A=(2B+2C)/4 A=(C+B)4
D=(2B +2C)/4 D= 3B+)4 D= (2B +2C)/4 D=(3C+B)4

8606
A B
C D
A=B A=C A=A A=A
C=B B=D B=A B=B
D=B C=A C=C
D=A D=D

Fig. 86

U.S. Patent

8700

Aug. 17, 2004

require
all 4 texels?

Sheet 71 of 175

Description

Color Substitution = 0
bilinear RGB =0
hilinear alpha =0

No

Color substitution is turned off, so chroma match sets texel color
to transparent black.
Point sampled ARGB.

Color Substitution = 0
bilinear RGB =1
bilinear alpha =0

No

Color substitution is turned off, so chroma match sets texe! color
to transparent black en any or all of 4 bilinear texels.
Bilinear RGB, point-sampled alpha.

Color Substitution =0
bilinear RGB =0
bilinear alpha =1

Color substitution is turned off, so chroma match sets texel color
to transparent black on any or all of 4 bilinear texels.
Point-sampled RGB, bilinear alpha.

Color Substitution =0
bilinear RGB =1
bilinear alpha=1

No

Color substitution is turned off, so chroma match sets texel color
to transparent black on any or all of 4 bilinear texels.
Bilinear RGB, bilinear alpha.

Color Substitution =1
bilinear RGB=0
bilinear alpha =0

Color substitution is turned on. Point-sampled RGB, 50 a chroma
match preserves the color but alpha is set to zero. Three other
texels flow through,

Color Substitution =1
bilinear RGB =1
bilinear alpha =0

Color substitution is turned on. Bilinear RGB, so all 4 texels are
needed for RGB substitution. When 4 texels match chroma, peint
sample to preserve chroma match through bilinear operation.
Point sample alpha.

Color Substitution =1
bilinear RGB =0
bilinear alpha =1

Color substitution is turned on. Bilinear alpha, but since chroma
modification to alpha doesn't require adjacent texels only fetch 4
when needed for bilinear. Point sampled RGB, so a chroma match
preserves RGB and only affects alpha (sets alpha to 0 for that texel).

Color Substitution =1
bilinear RGB =1
bilinear alpha =1

Color substitution Is turned on. Bilinear RGB, so all 4 texels are
needed for RGB substitution. When 4 texels match chroma, point
sample to preserve chroma match through bilinear operation.
Bilinear alpha.

Fig. 87

US 6,778,181 Bl

U.S. Patent Aug. 17, 2004 Sheet 72 of 175 US 6,778,181 B1

8404
chromakey bilin_rgb
1-n_s w_tl chromarange
I-n_t w_sl texel colors ABCD
RN
__, ' ,
i ck_test
8804

K A A r v X
w_s_lt_half w_t_lt_half
ck_ctl

mux controls
8806 g /f
k 4

N

ck _alu
A / y A
substitute colors 4
8808
K A4 % A gv gv % i
ck_texel

1111

output colors to bilinear blend unit

Fig. 88

U.S. Patent Aug. 17, 2004 Sheet 73 of 175 US 6,778,181 B1

8900
Map outli
«— p outline —_—
A B B, LA A B
| !
]) L]
) I
I !
C D D 1 C C D
mirror mirror
Band D Aand C
S is clamped to 1 S is clamped to 0
Fig. 89
9000

S is clamped to 1 S is clamped to 0

Fig. 90

U.S. Patent Aug. 17, 2004 Sheet 74 of 175

9100

S is clamped to 1

Fig. 91

9200

S isclamped to 1,
T is clamped to 0

Fig. 92

US 6,778,181 Bl

U.S. Patent Aug. 17, 2004 Sheet 75 of 175 US 6,778,181 B1

scalefactor |

(from m_scaminpunvl bilerp (from bilerps)

P v 11—~ 8406

hold _accum o1 10
load_accum] I

(from control block) \\T/_/
+

/___/— 17-bit Accum
8408

U.S. Patent Aug. 17, 2004 Sheet 76 of 175 US 6,778,181 B1

9400
9404
! ! 9406
I Input L Shift l
3 Filter generates Ctex, Atex
epi 3 - 2 po
882188 g H 22 g o%& g & 85{ Iterators generate Citr,Aitr, Zitr
l l l l l l \ ll ‘ T T A Sideband generates CO, C1, A0, A1
Texture Combine Unit (TCU) B .
(atb)y"c+d
An adder between the TCU and CCU
| generates Csum for dot product math.
a3 =2
2 &9 Combine
Csum Data .
¢ Y VYYYVYYY YYY 3 y£ Register Combine feedback needs no FIFO
(CDR) because the combine pipe bubble
Color Combine Unit (CCU) coliapses and dispatcher guarantees :
(a+b)*c+d packet sizes match pipeline depth.
¢Cccu ‘Accu
I Output format, LR Shift & Ciamp | Gombine output data feeds Cpre,
| l T Apre, Creg, Areg and Ccur, Acur.

Ccurl l Acur

to Pixel Engine

9402
Fig. 94

U.S. Patent

Aug. 17, 2004 Sheet 77 of 175 US 6,778,181 B1

9500

aloha

abcd

9502 9504
9506
red green blue / 4 p;‘ra"rifZJZé’e ;;ecr':ixel .

abcd abcd abcd

o o EachARGE sice computes
? ? e
|| %

E Each abcd input is independently

+OF0OE

? ? @ i selectable from the TCU/CCU inputs

nixd The RGB pipes share control.

pix1 The A pipe has independent control

pix3

Fig. 95

U.S. Patent Aug. 17, 2004

all 3‘ 3
i O
inputs 8’5 XEo b 2 2
’® 553569% P
$.4.8 © E E

a select[3:0] b select[3:0]

Sheet 78 of 175

l¢——Cprev

j«——Creg
je——Ctex

le——— Citer

je——Co0

——{ms2Tcu

Atex—

Aiter—
AQ—

Areg—

Areg—
Aprey-——

pe——Lms2Tey ——

le——Cprev

le———Ctex
le——Citer
j——C0

[
Q
[
le———Creg

¢ select[3:0)

d select[3:0}

d mode[1:0]

a mode[1:0] b mode[1:0] ¢ mode{1.0]
34.8 | /s.4.8
+
T Q
L 10 s58
¥
32180 minmax_en ——»_1 0 /
{minmax_en, sign bit} && sign bit
s.5.8 5.4.8
14x13
signed 5.4.8 (1.0 - x) function
multiplier input unchanged
input negated (2s
comp)
input - 0.5
1.0 - input
+
minmax function
allows user to select
¢ input or d input
U o Clamp based on a {a<b)
cul atmp u (0to 1.0) or comparison
{16 10 15.99) out = (a<b} ?c: d
s4.8
Ctcu

Fig. 96

US 6,778,181 Bl

Aprav—
Atex—
Aiter——

A0—

»
:

U.S. Patent Aug. 17, 2004 Sheet 79 of 175 US 6,778,181 B1

mode[1:0}] modef{1:0] ¢ mode[1:0} mode[1:0]
" 48] v (548
all inputs
are +
s4.8
L 10 As58 0
. . ,% minmax_en e éfb
{minmax_en, sign bit} 88 sign bit
$.5.8 s4.8
14x13

signed 5.4.8 (1.0 - x) function

multiplier input unchanged
input negated (2s

© comp)
input - 0.5
\ 1.0 - input
+
minmax function
allows user to select
¢ input or d input
tcaClampOu Clamp baiiﬂg;r?sf:b)
t e (0to1.0)or
(-16 to 15.99) out = (a<b) 2 ¢ : d

s.4.8

Atcu

v

Fig. 97

U.S. Patent Aug. 17, 2004 Sheet 80 of 175 US 6,778,181 B1

9800

N

|

itar —

8 overide
9 &4 Atex|7]
T
LLLLL) NANARR AR LLLLL)
“all u§§§3°,_ U§x§3°‘_ u§x§3°_ “E"B’ -
inputs 23333%=< 253333 £52223< 283353%
are
oy gprpppptiibb Lol HHHY L L L S
588058 ~ 885650 535558 5380658
[0Tsst] [T s e
red tid il
a select{3:0] I u/selecl(SO] / ¢ select{3:0] dselecali\:’—/
chroma key | s4.8 5.4.8 548 s.4.8
check :

v Jr
© mode{1:0) (1.0-x)

&& sign bit

+
10 s.58
3210
{minmax_en, sign bit}
5.5.8, s.4.8
A
14x13
signed
muttiplier
+
___ccuClampOu

t

Clamp Oto 1.0

—cucOutMode]1:0)

—cucOutShift]3:0]

LR Shift 0to 4
Clamp0io 10

8.4.8

____cucOutClam
P

Ceur

Fig. 98

4]
minmax_en Hé#j

(1.0 - x) function

input unchanged
input negated (2s
comp)
input-0.5
1.0 - input

minmax function

allows user to select
¢ input or d input
based on a {(a<b)
comparison

out=(a<b)?c:d

U.S. Patent Aug. 17, 2004

Sheet 81 of 175

DEF XY DEFxE lE>><:a--
os5Psofo- @ 298aw 2 SO
a SB523x¥«Y 588z} §§g§§:<<
inpuls
are
s.4.8
a select{3:0] b select[3:0} ¢ select{3:0]
alphamask
check
s4.8

¥

4

emsaria (109

0
minmax_en a%b

&& sign bit

d select[3:0]

US 6,778,181 Bl

A 4

d modef

a mode|1:0]
+
10 .58
3210
{minmax_en, sign bit}
s.5.8 s4.8
14x13
signed s4.8
multiplier
\d 4
+
ccaClampOu

—cuaQutMode[1:0]

—cuaOutShifi[3:0}

___cuaQuiClam

1.0 - x) function

input unchanged
input negated (2s
comp)
input - 0.5
1.0 - input

minmax function

allows user to select
¢input or d input
based on a (a<b)
comparison

out=(a<b)?c:d

U.S. Patent Aug. 17, 2004 Sheet 82 of 175 US 6,778,181 B1

10000

10002
DETERMINING A PIXEL WITHIN A PRIMITIVE THAT IS TO BE /
TEXTURE MAPPED

10004
IDENTIFYING TEXTURE COORDINATES ASSOCIATED WITH THE /
‘PIXEL

10004

IDENTIFYING A PLURALITY OF SETS OF LIGHT VALUES /
ASSOCIATED WITH VERTICES OF THE PRIMITIVE

10006
LOOKING UP TEXTURE INFORMATION UTILIZING THE TEXTURE /
COORDINATES :

Y

INTERPOLATING A PLURALITY OF INTERPOLATED LIGHT VALUES / 10008
UTILIZING THE SETS OF LIGHT VALUES AND TEXTURE
COORDINATES

10010
MULTIPLYING THE INTERPOLATED LIGHT VALUES WITH THE /
TEXTURE INFORMATION

Fig. 100

U.S. Patent Aug. 17, 2004 Sheet 83 of 175 US 6,778,181 B1

10100

10200
\:A.R.G.B> = Rt"Ri + Gt*Gi + Bt*Bi + At*Ai \<A,R,G,B> = Rt*Ri + Gt*Gi + Bt*Bi

O—O—O—O—O—0@~ >

U.S. Patent Aug. 17, 2004 Sheet 84 of 175 US 6,778,181 B1

4
>
v
4
y

texture texture
A R G B
(DT) (DS) (DS) (DS) <R,G,B> = <ds,dt,dw> =
] [/} 0 0
+ . <DS DT>| COr COg COb
@ . @ CirC1gC1b
1 co co co

= <DS*COr + DT*C1r,
DS*C0g + DT*C1g,
DS*COb + DT*C1b>

TCU
)
AN
(&)
@)
-
@)
-

CCU

v - Fig. 103

U.S. Patent Aug. 17, 2004 Sheet 85 of 175 US 6,778,181 B1

824
|
Input
from
accum
¥ feedback ccu
x % '5.4.8
83 s.78 1 (') 4>
L=
2 (1.0-X) fe——
Le mode[1:0]
. O £
kT
o 'E' Q accum_add
2 \ 4
ES "4
38
®5
E s.7.8
v
shift right (0 to 3 bits)
5.7.8,
7
accum_load v

clamp to (-16 to 15.99)

to PE /1 s.4.8
prev iteration
recursion FIFO

Fig. 104

U.S. Patent Aug. 17, 2004 Sheet 86 of 175 US 6,778,181 B1

10500
10502 ;iuw T, M A
/ vllira (rIire) (relre) (rsIre)
) Triangle State < ¥
write from EIFQ read from lteration State 10504
setup unit syncram iterators Array \J
syncram
I I
deltaX daltay start Accum Push LPush RPush
10506 (pending) (pending) (pending) (pending)) ding) { g)
oo L A
Parameter Iterators
I l Accum Push LPush RPush
pix0 pbxd pbd pix0
deltax deltaY \

10508 l l

L—i Quad Neighborhood Generation |

I l I I I |
deltaX deltaY pix0 pix1 pix2 pix3
wotan ¥ 4 ' ! ‘
caverage >| AA Coverage Mask Correction |
mask[19:0] / l l l l
10510 pix 0 pix 1 pix 2 pix 3

(upper left) (upperright) (lower left) (lower right)

Fig. 105

U.S. Patent

10502

Aug. 17, 2004

Sheet 87 of 175

<
<

US 6,778,181 Bl

t%x sslg']p': baseptr
tex start
tri 2 slope
1 tex start
1 slope
tex start
0 Slops TO read
tex start
3 slope "
tex start N
tri 2 siope T1-2 read
2 tex start
1 slope
tex start
0 slope "
tex start
0 Siope T3 read
tex start
tri 1 slope
3 tex start
2 slope
tex start
3 slope P
tex start h
4 Slope T4-7 read
tex start
3 slope
tri tex start
4 2 slope
tex start
1 siope
tex start
~ 0 slope
»
write
empty space
Write by > syncram < Read by
Setup Unit Iterator

Fig.

106

U.S. Patent

Aug. 17, 2004

Sheet 88 of 175

US 6,778,181 Bl

10504

write from Triangle State read 16
setup unit FIFO pointers 17
syncram syncram
10506 l l I
\ il o | o bEslben | D] D3]
I ' v |4
Y v 2 (1 (1
|>deX I |>deY l DAccum | D Push l I>Lpush I DRpush I
] <
<<
vl
l pixel0 to Quad
Neighborhood
Generation ¥

Fig. 107

U.S. Patent Aug. 17, 2004 Sheet 89 of 175 US 6,778,181 B1

10508
iterated
Pixel O dPdX dPdY
(parameter P)
|
* S
v
N
_’_T/
Pixel 0 Pixet 1 Pixel 2 pixel 3

{upper left) {upper right) ({lower left) (lower right)

Fig. 108

U.S. Patent Aug. 17, 2004 Sheet 90 of 175 US 6,778,181 B1

mask[4:0] = {center, LR, LL, UR, UL}

sample valid

dx dy
center subsample mask(4] 0 o
lower right subsam ple mask[3] +1/8 +3/8
lower left subsample mask([2] -3/8 +1/8
upper right subsample mask(1] +3/8 -1/8
upper left subsampie mask(0] -1/8 -3/8

4+——dPdX ———p

subpixel coverage
masks for pixel quad
(5 subsamples/pixa!)

0 0000 => pick center

00001 => pick sample 0 . . .
00010 => pick samaple 1 required antialias correction
00100 => pick sample 2

! c =po
8 ;g?? = "?"t sa"‘p:e :1‘ SO = PO - dpdx/8 - dpdy/4 - dpdy/8
00101 o P!°k “’"",‘ M S1=P0 + dpdx/8 + dpdx/4 - dpdy/8
01010 oo :;f* ::’;glz . $2 = PO - dpdx/8 - dpdx/4 + dpdy/B
01100 => pick sample 2 S3 = P0 + dpdx/8 + dpdyd4 + dpdy/8
1 xxxx => pick center
” o o~ ™
A A A A
o x R = 10510
o (=3 (=3 a a
=3 R o <
(mask[1:0]== 01) {|
(mask[3:2] == 10) o
Imask[1] && v 3 ¥
Y(mask(3:2] = 10)

(invert, add Isb1)

'mask[3] ||
t{mask[1:0] = 00)
(invert, add Isb0)

mask[4]]|
{mask{3:0]) == 0000)

per-pixel adjustment (X4)

Fig. 109

U.S. Patent

Aug. 17, 2004

Sheet 91 of 175

US 6,778,181 Bl

from FLT from TA 1 1 000 from CE
fit_pix0 tatd_start cetd_addr
fit_pix1 tatd_siope cetd_data
fit_pix2 tatd_newtri 1 1002 cetd_ifb_be_n
fit_pix3 tatd_newitr
tatd_prmend LFB Unit
byte swizzle
| ; oo | | 11004 |
L ¥
itr itr word swap - sideband
tcu argb 1 =z 5 inteface
da:ﬁ 01 y r g itr_2[0,dx,dy} or |
pa 7 | color lanes sbi_tb_* I sbi
¢ bypass Ifb_override argh
abgr
b .
rggb,: P s:c'lfeband reg
D b mo
! 11006~ 4 .5 de
L 2
CcCu .
deband reg
data color format < st
11008 ~ rgb565 Ifb AD const
path - rgh555
argb1555
rgb888
,3'35353'3 . sideband reg
. | I rgb555216 color AR1
argb1555z16
itr itr 216
acc X to .
data Y ap) arghB888z16 W sideband reg
l |_ﬂel_m_x37t'tr_ 0.dx.d color GB1
path ir_xy[0,dx, ¥
pstate_mas|) Dbipeline...]

'

tdpe_[argh]_pix0
tdpe_[argb]_pix1
tdpe_[argb]_pix2
tdpe_[argb}_pix3

to PE

!

tdpe_[z,qp]_{0,dx,dy]
tdpe_xy_addr
tdpe_mask

tdpe_{fb_type

to PE

Fig. 110

U.S. Patent Aug. 17, 2004

11100

(N

Sheet 92 of 175

bit field | symbolic name description
3:0 SST LFB FORMAT Linear frame buffer write format select (many argb formats)
5:4 SST LFB RGBA LANES Linear frame buffer RGBA lanes select (rgba combinations)
6 SST LFB WRITE SWAP16 Word swap enable (upper and lower words)
7 SST LFB WRITE BYTE SWAP Byte swizzle enable (big endian and little endian)
8 SST LFB ENPIXPIPE Pixel pipeline processing enable (data munge or not)
9 SST LFB WSELECT W (Op) select (Qp is Z from LFB or the tal foDConst)
31:10 Reserved
Fig. 111
11%:0
Value LFB Symbolic Name LFB 32 bit data word
0 SST_LFB 565 {rgb565[15:0], rgb565[15:0]}
1 SST LFB 555 {1°bx, rgb555[14:0}, 1’bx, rgb555[14:0}1}
2 SST LFB 1555 {argb1555[15:0], argb1555[15:0]}
3 Reserved
4 SST LFB 888 {8’bx, rgb888[23:0]}
5 SST LFB 8888 {argh8888[31:0]}
10:6 Reserved
11 SST LFB 232 {Z[31:01}
12 SST LFB Z565 {Z[15:0], rgb565[15:0]}
13 SST LFB 2555 {Z[15:0], 1°bx, argh555}
14 SST LFB Z1555 {Z[15:0], argb1555[15:0]}
15 SST LFB ZZ {Z[15:0], Z[15:0]}
Fig. 112
11300
bit field | symbolic name description
15:0 SST_LFB_D_CONST LFB Depth Constant
31:16 SST LFB_A CONST LFB Alpha Constant

Fig. 113

US 6,778,181 Bl

U.S. Patent

11400

\'

Aug. 17, 2004

Sheet 93 of 175

taLfbMode[7]

Data Input [31:0]

Data Output [31:0]

0 or physical-1fb [31:0] [31:0]
1 [31:0] {[7:01, [15:8], [23:16],
[31:24]}
Fig. 114
11500
taLfbMode|6] Data Input [31:0] Data Output [31:0]

0 or physical-1fb

[31:0]

[31:0]

1

[31:0]

{[15:0], [31:16]}

Fig. 115
11 GQ‘
taLfbMode|[5:4] Data Input Pixel Data Output Pixel
0 or physical-1fb ARGB ARGB
1 ABGR ARGB
2 RGBA ARGB
3 BGRA ARGB
X (don’t care) Z Z

Fig. 116

US 6,778,181 Bl

U.S. Patent

Aug. 17, 2004

Sheet 94 of 175

11700
taLfbMo | LFB Data Input [31:0] LFB Left Pixel LFB Right Pixel
de Color (argb) and Depth (z) | Color (argb) and Depth (z)
[3:0]
0 {rgb565[15:0), rgb565[15:0]} = a[7:0] = ColorAR1[23:16] a[7:0] = ColorAR1[23:16]
{r0[4:0}, g0[5:0), b0[4:0] r{7:0] = {r0[4:0], rO[4:2]} r{7:0] = {r1[4:0], r1[4:2]}
,r1[4:0), g1{5:0], b1[4:0]} g[7:0] = {g0[5:0], g0[5:4]} g[7:0] = {g1[5:0], g1[5:4]}
b[7:0] = {b0[4:0], bo[4:2]} b[7:0] = {b1[4:0), b1[4:2]}
2{35:0] = {DConst[15:0], 190} | 2[35:0] = {1'b0, DConst[15:0],
19'b0}
1 {1'bx, 1gb555[14:0] "a[7:0] = ColorAR1[23:16] a[7:0] = ColorAR1(23:16]
{‘:'Ex- :gtfﬁ[l‘[‘)ﬁ]é;w“ o r[7:0] = {r0[4:0], rO[4:2]} r{7:0] = {r1[4:0], r1[4:2]}
bx, r0[4:01, £0(4:0], bOf4: 9[7:0] = {g0{4:0], gO[4:2]} g[7:0] = {g1[4:0], g1(4:2]}
, 1'bx, r1{4:0], g1[4:0], b1[4:0]} b[7:0] = {b0[4:0], bO[4:2]} b[7:0] = {b1[4:0], b1[4:2]}
2[35:0] = {DConst[15:0], 19°b0} 2[35:0] = {1°b0, DConst{15:0],-19°b0}
2 {argb1555[15:0], argb1555(15:0]} = | a[7:0] = {B{a0}} a[7:0] = {8{al1}}
{a0, 10{4:0], g0[4:0}, b0[4:0] r[7:0] = {r0{4:0], rO[4:2]} r[7:0] = {r1[4:0], ri[4:2]}
,al, rl[4:0], g1{4:0], b1[4:0)} g[7:0] = {g0[4:0], g0O[4:2]} 9(7:0] = {g1{4:0], g1[4:2]}
b[7:0) = {bO[4:0], bO[4:2]} b[7:0] = {b1{4:0], b1[4:2]}
2{35:0] = {1°b0, DConst{15:0}, t9’bO} 2[35:0] = {1°b0, DConst[15:0], 19°b0}
4 {8’bx, rghBRE[23:0]} = a[12:0] = ColorAR1{23:16] same as left
{8’bx, r{7:0], g[7:0], b[7:0]} r[12:0] = r{7:0]
g[12:0] = g[7:0}
b[12:0] = b[7:0]
2[35:0] = {1'b0, DConst[15:0], 19°b0}
5 {argh8888[31:0]} = a[12:0] = a[7:0] same as left
{a[7:0], f{7:0], g[7:0}, b[7:0]} r[12:0] = r[7:0]
g[12:0] = g[7:0)]
b{12:0} = b[7:0)
2{35:0] = {1’b0, DConst[15:0], 1940}
I} {z[31:0]} af7:0] = {ColorAR1[23:16]} same as left
r{7:0] = {ColorAR1[7:0]}
g[7:0]) = {ColorGB1[23:16]}
b[7:0] = {ColorGB1{7:0]}
2[35:0] = {1'b0, 2[31:0], 4’b0}
12 {2]15:0], rgh565[15:0]} = a[12:0] = ColorAR1[23:16] same as lefl
{2{15:0], {4:0], g[5:0], b[4:0]} r[12:0] = {r[4:0], r[4:2]}
9{12:0] = {g[5:0], g[5:4]}
b[12:0] = {b[4:0], b[4:2]}
2[35:0] = {1'b0, 2{15:0], 19°b0}
13 {2[15:0}, I’bx, argb555} = a[7:0] = {ColorARL[23:16]} same as leR
{2[15:0), I'bx, 1[4:0], g[5:0], b[4:0)} | r{7:0] = {r[4:0], r[4:2]}}
9[7:0] = {9[4:0], g[4:2]}
b[7:0] = {b[4:0], b[4:2]}
2[35:0] = {2[15:0], 19°bD}
14 {2{15:0}, argb1555[15:0]}= a[7:0) = {8{a)} same as left
{2[15:0], a, r[4:0], g[4:0], b[4:0], } r[7:0] = {r[4:0], r[4:2]}
9[7:0] = {g[4:0], g[4:2]}
b[7:0] = {b[4:0], b[4:2]}
2[35:0] = {2{15:0], 19°b0}
15 {z[15:0], z{15:0}} = a[7:0] = {ColorAR1[23:16]} a[7:0] = {ColorAR1[23:16]}
{20{15:0], zI[15:0}} r[7:0] = {ColorAR1[7:0]} r[7:0] = {ColorAR1[7:0]}
g[7:0] = {ColorGB1[23:16]} g[7:0] = {ColorGB1[{23:16]}
b[7:0] = {ColorGB1{7:0]} b[7:0} = {ColorGB1[7:0]}
2[35:0] = {1'b0, 20[15:0], 19’60} 2[35:0] = {1'b0, 21[15:0}, 19°b0}

Fig. 117

US 6,778,181 Bl

U.S. Patent US 6,778,181 B1

Aug. 17, 2004 Sheet 95 of 175

11800

\

tdpe_lfb_typef1:0] Decode Equation Description

00 Icetd_lfb_valid normal rendering — not LFB

01 cetd_Ifb_valid & XY address based LFB with
Icetd_Ifb_phy & 3D processing
taLfbMode[8]

10 cetd_Ifb_valid & XY address based LFB
Icetd_lfb_phy & without
'talfbMode[8] 3D processing

11 reserved reserved

Fig. 118

11900

N

tdpe_lfb_type[1:
0]
00 or 01 or 10

tdpe_mask[19:0]

{mask_pix3[4:0], mask_pix2[4:0], mask_pix1[4:0],
mask_pix0[4:0]}

where pixels {3, 2, 1, 0} = {Ir, 11, ur, ul} pixels and each
pixel maskN[4:0] = {center, Ir, 11, ur, ul} sub-pixels. The XY
address based LFBs set the fully covered masks based on the
LFB mode and XY address LSBs. A 16-bit LFB may enable
write to two horizontal pixels and the 32-bit LFB may enable
coverage to any single pixel.

11 reserved

Fig. 119

12000

N

tdpe_Ifb_type[1:0]

tdpe_xy_addr[19:0]

000r 01 or 10

{X[10:1], Y[10:1]}

11

reserved

Fig.

120

U.S. Patent Aug. 17, 2004 Sheet 96 of 175 US 6,778,181 B1

12100
talL.fbMode[9] tdpe_z_pix0[35:0] tdpe_z_dx[38:0]
don’t_care {z_lfb_left[35:0]} {3’b0, z_lfb_right[35:0]}
talLfbMode[9] tdpe_q_pix0[35:0] tdpe_q_dx[38:0]
0- {z_lfb_left[35:0]} {3°b0, z_lfb_right[35:0]}
1 {1'b0, DConst[15:0], {4'b0, DConst[15:0],
19'b0} 4'b0}
Fig. 121
12202 - _ 12204
) upper-le upper-night)
\—’\ 1fb-left Ifb-right ARGB
ARGBZ
lower-left lower-right
1fb-left ARGB | Ifb-left ARGB

Fig. 122

U.S. Patent

Aug. 17, 2004 Sheet 97 of 175

12302

12302

.

-

phys address[31:5],[4:3]

Fig. 123

rvalid

US 6,778,181 Bl

12304

12304

rvalid

phys address[31:5],{4:3]

1 2404"\

\/

(, 12402

pass | format| reqO [reql |req2 |req3 |last |cc context
\ /
\Y4
to texture cache
Fig. 124
1230\2

phys address[31:5],[4,3] lin/tiled, tiled mode, agp/local

Fig. 125

12602

return data[255:0],addr[4,3]

Fig. 126

U.S. Patent Aug. 17, 2004 Sheet 98 of 175 US 6,778,181 B1

12704
a[7:0] | £[7:0] | g[7:0] | b[7:0] | rvalid |

1270 \\\\\\‘\\\\\\\\ ///,////////’//

pass | color0 | colorl +++| colorl5

Fig. 127

12800

S[1:0— H

T[1:0] 00 01 10 11 00 01

i
(=]
—
—

oolol1{2]3]o]1]2]3
01{4|5|6|7]|4]|5 7
6 T[2]=0
10[s|o|A|B|8|9|A|B
11{cIDlE|F|c|D|E|F le—" 12802
oolol1]2(3]o0]1]2]3
ot|la|s5|6|7]a]5|6]|7
T[2] =
10/8/9/ A B|l8|9|AlB
11lc|D|E|F|C|D|E|F
S[2]=0 S[2]=1
Fig. 128

S[1:0]———»
T(o] 00 0110 11 00 01 10 11
0j1]2]3]0j1|2]3
4|5]6|7]4|5]6]7
10/8/9|A|B|8|9|A|B
C/|D E|F|C|DE|F

S[2]=0 S[2]=1 5\
1290 12904

Fig. 129

U.S. Patent Aug. 17, 2004 Sheet 99 of 175 US 6,778,181 B1

13000

oo
W | W
=N
wh i
ey

S[4]=0 S[41=1

Fig. 130

13100

\ S[1:0]———»
T 00 0110 11
oofol1]2]3
o1{4|5]6|7
10[s]o]AlB

c|p|E|F

Fig. 131

13200

~

S[3:0]————»
012345 E F
loli[2]3(4]s] - [E|F]

Fig. 132

U.S. Patent Aug. 17, 2004 Sheet 100 of 175 US 6,778,181 B1

13300

—

Tr:0 90

S[1:0}————»

o
S
[E—
(e
[—
[—

S
Al |s|o
gle|wn|—
o> o [
o || w

Fig. 133

13400

Fig. 134

U.S. Patent Aug. 17, 2004 Sheet 101 of 175 US 6,778,181 B1

13500

[63:0] =
- 7:
Egg; _: ElS?l] {[63:561, [55:481, [47:40],[39:32],

[31:24],[23:161, [15:8], [7:0]}
(02) -> [23:16] (fed into decomp unit)
(03) -> [31:24)]

(04) -> [39:32] 0 —
(05) -> [47:40]
(06) -> [55:48]
(07) -> [63:56]
(08) -> [71:64] 256 bit read atom
(09) -> [79:72]
(0oa) -> [87:80]
(0B) -> [95:88]

(0C) -> [103:96] 1

(0D) -> [111:104]

(OE}) -> [119:112]

(0F) -> [127:120]

(10) -> [135:128] v

(11) -> [143:136]} Y2=0 0 1
(12) -»> [151:144]

(13) -> [159:152] ’

(14) -> [167:160] Y,=1 2 3
(15) -> [175:168]

(16) -> [183:176]
(17) -> [191:184]
(18) -> [199:192]
{19) -> [207:200]
(1a) -> [215:208]
(1B) -> [223:216]
1C) -> [231:224]
1D) -> [239:232]

1E) -> [247:240] Fig. 135

1F) -> [255:248]

U.S. Patent Aug. 17, 2004 Sheet 102 of 175 US 6,778,181 B1

13600
(00) -> [7:0] 00
(01) -> [15:8] 01 ‘)
(02) -> [23:16] 02
(03) -> [31:24] 03
(04) -> [39:32] 04
(05) -> [47:40] 05
(06) -> [55:48] 06
(07) -> [63:56] 07
(08) -> [71:64] 08 \ 256 bit read atom
(09) -» [79:72] 09 \ //
(0A) -> [87:80] 0A
(0B) -> [95:88] 0B /

(0C) -> [103:96]

(oD) -> [111:104]
(OE) -> [119:112]
(OF) -> [127:120]
(10) -> [135:128]
(11) -»> [143:136]
(12) -> [151:144]
(13) -> [159:152]
(14) -> [167:160]
(15) -> [175:168]
(16) -> [183:176]
(17) -> [191:184]
(18) -> [199:192]
(19) -> [207:200]
(1) -> [215:208]
(1B) -»> [223:216]
(1C) -> [231:224)
(1D) -> [239:232]
(1E) -> [247:240]

(1F) -»> [255:248]

Fig. 136

U.S. Patent

Aug. 17,2004 Sheet 103 of 175

(00) -> [7:0}
(01) -> [15:8]
{02) -> [23:186]
(03) -> [31:24]
(04) -> [39:32]
(05) -> [47:40}
(06) -> [55:48]
(07) -> [63:56]
(08) -> [71:64]
(09) -> [79:72]
{on) -> [87:80]
(OB) -> [95:88]
(oc) -> [103:96]
(0D) -> [111:104]
(0E) -> [119:112]
(OF) -> [127:120]
(10) -> [135:128]
(11) -> [143:136]
(12) -> [151:144]
(13) -> [159:152]
(14) -> [167:160]
(15) -> [175:168]
(16) -> [183:176]
(17) -> [191:184]
(18) -> [199:192]
(19) -»> [207:200]
(1A} -> [215:208]
(1B) -> [223:216]
(1C) -> [231:224]
(1D) -> [239:232]
(1E) -> [247:240]
(1F) -> [255:248]

TI’A\

US 6,778,181 Bl

13700

[15:0] =
{[15:8],[7:01}

256 bit read atom

W N W

2
6
A
E

2

U.S. Patent

Aug. 17, 2004

(00) -> [7:0]

(01) -> [15:8]

(02) -» [23:16] 0
(03) -> [31:24]

(04) -> [39:32]

(05) -> [47:40]

(06) -> [55:48] 1
(07) -> [63:56]

(08) -> [71:64]

(09) -> [79:72]

(0a) -> [87:80] 2
(0B) -> [95:88]

(0oC) -> [103:96]

(0D) -> [111:104]

(OE) -> [119:112] 3
(OF) -> [127:120]

{10} -> [135:128]

{11) -> [143:136]

{12) -> [151:144] 4
(13) -> [159:152}

(14) -> [167:160]

(15) -> [175:168]

(16) -> [183:176] >
(17) -> [191:184]

{18) -> [199:192]

(19) -»> [207:200]

(1A) -> [215:208] 6
(1B) -> [223:216]

(1C) -> [231:224]

(1D) -> [239:232]

(1E) -> [247:240] 7
(1F) -> [255:248]

Sheet 104 of 175

13800

-

[31:0] =

US 6,778,181 Bl

{[31:24],[23:16], [15:8], [7:01}

256 bit read atoms

v
b=0]0 8§ |9
Y,=1] 2 | 3 A | B
Y,=2| 4 | 5 D
Y,=3| 6 |7 E | F
X,=0/X,= X,=0 X,=1
X, =0 X, =1

Fig. 138

U.S. Patent Aug. 17, 2004 Sheet 105 of 175 US 6,778,181 B1

13900
\ 256 bits 256 bits
A
e /—_’——*ﬁ
0 1 2 3 4 5 6 7 8 F
S —
T T,
5
{04) -> [39:32] (2¢) -» [231:224] ~
(05) -> [47:40] (2D) -> [239:232] «
(06) -> [55:48] (2E) -> [247:240]
(07) -> [63:56] (2F) -» [255:248)
(00) -> [7:0] (1sB) (20) -»> [7:01
(01) -> [15:8] (21) -> [15:8]
(02) -> [23:16] (22) -> [23:16]
(03) -> [31:24] (msB) (23) -> [31:24]
256 bits
A
o |12 13|45 6|78 . F
o
o
T S[3:0] —» T :g
(00) -> [7:0] (1E) -> [247:240]
(01) -> [15:8] (1F) S [255:248]
256 bits
00 01 02 | 03 04 | 05 06 07 | 08 1F o
o
— 0
T S[4:0] —» T =
(00) -> {7:0] (LF) -> [255:248]

Fig. 139

U.S. Patent Aug. 17, 2004 Sheet 106 of 175 US 6,778,181 B1

14000

14002 pass format cccontext addr0 addr3

N R S
pass, format, Color Cache Tag Unit

ccache_state addr0 addr3 14004

Color Cache
FIFO (1)
A
pass, format, Raw
ccache_state Format Conversion Unit Cache
A A A *e A A 4
pass,
ceache_state Color Cache Data Store
pass
pass colorQ colorl5

Fig. 140

U.S. Patent Aug. 17, 2004 Sheet 107 of 175 US 6,778,181 B1

14100
T[1:0] TI0] T[2]

S[1:0}—» 0123 012301230123 l
0 0
1

! 0
2 0
3 14102 14104
1 Bilinear
0 0 sample
1 1 points
N
2 0
3 1
o X
1 1
2 0 0 K
3 1
S,T

0 0 sample
1 1 1 point
2 0
3 1

S[0] —»

S[2] —» 0 1 0 1

U.S. Patent Aug. 17, 2004 Sheet 108 of 175 US 6,778,181 B1

14204 14206

phys address{31:5),{4:3] | rvalid

14200 \ /
\ 14202
[ccrerIccreql |ccreq2 lccreq3 {
\

V

to color cache
tag unit

14300 Fig. 142

.

bypass data addr0 rvalid0 addrl rvalidl addr2 rvalid2 addr3 rvalid3 stall out

(N N O O I 0 O

bypass mod | | Tag mod 00 | |Tag mod 01 | |Tag mod 10 | |Tag mod 11

/

>

stall 4 stall 1+ stall [+ stal] 1+ stall
14304 14302
bypass data ccts0 cetsl ccts2 ccts3 stall_in
Fig. 143

U.S. Patent Aug. 17, 2004 Sheet 109 of 175 US 6,778,181 B1

14500
addr invalidate rvalid
29
—1 2
' .
addr iin hit0 .| 1out
14502 index0
. tag0 2
write(
iout inval |«
2
A
index1 > i .
tagl 2 =
write] — =
1out inval *:-*
S
2 a0
l Y 8
addr iin hit2 » ‘
index2 >
tag2 e 2
write? [«
iout inval
___l 2
addr iin hit3 »
index3
tag3 2
write3 («
iout inval j«

g1

Flg 145 index miss stall

U.S. Patent Aug. 17, 2004 Sheet 110 of 175 US 6,778,181 B1

st0[3:0] | st4[3:0] | st8[3:0] | st12[3:0] pg0[1:0] | pe4[1:0]|pgB8[1:0]|pgl2[1:0]

mO0{3:0] | m4[3:0]| m8[3:0] | m12[3:0] i0[1:0}|i1[1:0]| i2[1:0]] i3[1:0]

14600 \& j/
L pass[P:0] | format[7:0] | pm_info

st_info | pg_info |index_info miss[3:0] | last

\
v /

color cache context

Fig. 146

U.S. Patent

Aug. 17, 2004

Sheet 111 of 175

US 6,778,181 Bl

14700
tform | Symbolic Name/ 8-bit Alpha 8-bit Red 8-bit Green 8-bit Blue
at Texture format
Value
0 SST_TA_RGB332 Oxff {r[2:0],r[2:0),1[2 | {gf2:0),2{2:0],g[2:1 | {b[1:0],b[1:0],b[1:0
8-bit RGB (3-3-2) 111 11 1.b[1:01}
1 Reserved
2 SST_TA_AS8 a[7:0] a[7:0] a[7:0] a[7:0]
8-bit Alpha
3 SST_TA_I8 Oxff i[7:0] if7:0] i[7:0]
8-bit Intensity
4 SST_TA_Al44 {a[3:0],a[3:0]} {i[3:01,i[3:0]} {1[3:0],i[3:0]} {i[3:01,i[3:0]}
8-bit Alpha, Intensity (4-4)
5 SST_TA_P8 Oxff palette r[7:0] palette g[7:0] palette b{7:0]
8-bit Palette to RGB
6 SST_TA_P8_ARGB6666 {palette_1[7:2], {palette_r[1:0], {palette_g[3:0], {palette_b[5:0],
8 bit Palette to RGBA palette_1[7:6] palette_g[7:4], palette_b[7:6], palette_b[5:4]}
palette_1[1:0]} palette_g[3:2]}
7 Reserved
8 SST_TA_ARGBS332 a[7:0] {r[2:0],r[2:0),r{2 | {g[2:0],8[2:0].&{2:1 | {b[1:0],b[1:0],b[1:0
16-bit ARGB (8-3-3-2) A1 1} Lbf1:01}
9 Reserved
10 SST_TA_RGB565 Oxff {r[4:0],r[4:2]} {gl5:01.r[5:4]} {b[4:0],b[4:2]}
16-bit RGB (5-6-3)
1 SST_TA_ARGBI1555 {a[0],a[0},a[0],2[0 | {r[4:0],r[4:2]} {g[4:0],g[4:21} {b[4:0],b[4:2]}
16-bit ARGB (1-5-5-5) A
a[0],a[0],a[0},2[0)
}
12 SST_TA_ARGB4444 {a[3:0],a{3:0]} {r[3:01,r{3:0]} {g[3:0],g[3:0]} {b[3:01,b[3:0]}
16-bit ARGB (4-4-4-4)
13 SST_TA_AIB8 a[7:0] i[7:0] i[7:0] i[7:0]
16-bit Alpha, Intensity (8-
8)
14 SST_TA_APS88 a[7:0] palette r[7:0] palette g[7:0] palette b[7:0]
16-bit Alpha, Palette (3-8))
15 Reserved
16 SST_TA_FBCMP
17 SST_TA _FXTI
18 SST_TA_ARGB8888 a[7:0] 1[7:0] g[7:0] b[7:0]
19 SST_TA_YUYV422 V[31:24] Y1[23:16] U[15:8] YO0[7:0]
20 SST_TA _UYVY422 Y1[31:24] V[23:16] YO0[15:8] U[7:0]
21 SST_TA_AVYU444 K[31:24] Y[23:16] U[15:8] V[7:0]
22 SST_TA_DXT!
23 SST_TA_DXT2
24 SST_TA_DXT3
25 SST_TA_DXT4
26 SST_TA_DXTS5

Fig. 147

U.S. Patent Aug. 17, 2004 Sheet 112 of 175 US 6,778,181 B1

14800

data[255:0] | Isbst[4,3]]

Fig. 148

14900

Color Cache FIFO bypass

24-bits PLT Write Da'il/ /|(256-bi!s RAW CACHE DATA Context data
COMP
< vowon 7 AN e
128 [ax8 L 4x8 128
2 } b] b1
PLT
LuT ol
RAM —1 control
¢) alpha 1 54
4x24+
YUV to RGE to
LT to
[‘}st%)‘% sgesré%Fl ARGB E)g rtg;&l 4—
e e 4 texe e
percy
e
416 x 32bit: E i
44 x32bits j X SeRis 4 x 32bits 116 x 32bits !____i
Rd/Wr
(\ Address Gen
14902) ‘
14906 14908 s

14904 2l 2 ol o s
S| B L] k]
2 2 2 5| B =
- o © ol 2 3
i g = £ 5

& -

© < "’+ ~

Fig. 149

U.S. Patent

15000

N\

Aug. 17, 2004

Sheet 113 of 175

US 6,778,181 Bl

bit 63 bit 0
Texel_index 15 to 0 Colorl (RGB565) Color0 (RGB565)
(2bit/texel)

32 16 16

Fig. 150
15100

bit 127 bit 64
Texel_index 15 to 0 Colorl (RGB565) ColorQ (RGB565)
(2bit/texel)

32 16 16
Bit 63 bit 0

| Alpha_value 15 to 0 (4bit/texel)
Fig. 151
15200

bit 127 bit 64
Texel_index 15 to0 0 Colorl (RGB565) Color0 (RGB565)
(2bit/texel)

32 16 16
Bit 63 bit 0
Alpha_index 15to 0 Alphal (a8) Alpha0 (a8)
(3bit/texel)

48 8 8

Fig. 152

U.S. Patent Aug. 17, 2004 Sheet 114 of 175 US 6,778,181 B1

15300
bit127 {rgb555) (3-bit/texel) bito
mode[1: | colorl | color0 texel 31 to 16 texel 15t0 0
0]
2 15 15 48 48
[127:126] mode [1:0]}
[125:121]1 red of colorl
[120:116] green of colorl
[115:111} blue of colori
[110:106] red of coloro
[105:101] green of color(
[100:96] blue of color0
[85:93] texel 31
[50:48] texel 16
[47:45] texel 15
Fig. 153
[2:0] texel 0
15400

\ texel 31 to texel 1
/’l[l texel 15 to texel 0\

t16| 117 t18} t19
Y2 =0 0 1 0| t1| t2 t3
t4| 15| t6 | t7 t20]| t21}t22 | 123
Y2=1
2 3 t8 |19 |[t10 {111 124 (125 | 126 |t27
x2=0 x2=1 t12 [t13 | 114|115 128 [129 | t30{t31

Pixel Depth = 4bits
Micro Tiled Address (MA[6:0] =

:3], Y2, X2,0,0, .
P31, 2. X2000 Fig. 154

U.S. Patent Aug. 17, 2004 Sheet 115 of 175 US 6,778,181 B1

15500
biti27 (rgb555) (2-bit/texel) bit0
[mode[2:0] | unused | color3 [color2 | colorl [Color0 | texel 31to 16 l texel 15t0 0 |
3 1 15 15 15 15 32 32

[127:125] mode [2:0]

[124] unused

[123:119] color3 (rs)

[118:114] celor3 (g5)

[113:109] color3 (bs)

[108:104] color2 (r5)

[103:99] colorz2 (g5)

[98:94] color2 (b5)

[93:89] colorl (r5)

[B8:84] colorl (g5)

[83:79] colorl (b5)

[78:74] colox0(rs)

[73:69] coloxr0 (g5)

[68:64] color0 (bS)

[63:62] texel 31

[33:52] teQel 16

[31:30] texel 15

[1;0] teiel 0

Fig. 155

U.S. Patent

15600

Aug. 17,2004 Sheet 116 of 175

US 6,778,181 Bl

(rgb555) (2-bit/texel) bit0

[' mode[0] [glsb[1:0] | Alpha[0] | Color3 [Color2 | Color! | Color0 [texel 31to16 | texel 15t00 |

bitl27

1 2 1 15
[127] mode [0]
[126:125] glsb([1:0]
[124] alpha[0]
[123:119] color3 (r5)
[118:114] color3 (g5}
[113:109] color3 (b5)
[108:104] color2 (r5)
[103:99] color2 (g5)
[98:94] color2 (bs)
[93:89] colorl (xr5)
[88:84] colorl (g5)
[83:79] colorl (bs)
[78:74} color0 (x5)
[73:69] color0 (g5)
[68:64] color0 (b5)

[63:62] texel 31
[33:32] texel 16
[31:30] texel 15
[1:0] texel 0

15 15 15 32 32

(1sbs of green for color 1 & color 3)

Fig. 156

U.S. Patent Aug. 17, 2004 Sheet 117 of 175 US 6,778,181 B1

15700
bit127 (argh55355) (2-bit/texel) bit0
Mode[2: | ler | Alpha | Alpha | Alpha | Color | Color | Color | texel texel
0] p |2 1 0 2 1 0 31to 16 15t0 0
3 1 5 5 5 15 15 15 32 32

[127:125]} mode [2:0]
(124] lerp
[123:119] color2 (as)
[118:114]} colorl (a5k)
[113:109] color0o (ab)
[108:104] color2(r5)

[103:99] color2(g5)

[98:94] colorz (bs)

[93:89] colorl(rs)

[88:84] colorl(gs)

[83:79] colorl (b5)

[78:74] color0(r5)

[73:69] coloro(gs)

[68:64] color0 (b5)

[63:62] texel 31

[33;32] éexel 16

[31:30] texel 15

[1:6] éexel 0

Fig. 157

U.S. Patent

64 cache slots

cache
entry

15800

RAM2

Aug. 17, 2004

tag
group

00

01

00

10

1"

00

01

01

10

"

00

P01

a3y

10

10

"

00

01

11

10

1"

2x2 texel

Sheet 118 of 175

US 6,778,181 Bl

Group 01 Group 00

x| x

X| X

0

Group 11

2

Group 10

miss=1100

priority decode,
lower miss first

is i2 so tag
group=10

i3[1:0)

i2[1:03

i01:0]

i0[1:0]

write add[3:0]

leti2=01

15802

f)

tag group[1:0]
(Isbst +2)

cache entry[1:0]

Fig. 158

U.S. Patent Aug. 17, 2004 Sheet 119 of 175

15900

US 6,778,181 Bl

tag group 00 tag group 10

% tag group O

tag aroup 11

U, 4 2 3 Bra FARMD, RAMI, RAMZ, RAMS respectively

0,1....E, F are stf3:0]

Fig. 159

U.S. Patent Aug. 17, 2004 Sheet 120 of 175 US 6,778,181 B1

16000

cache slot 10

cache siot D0

s
% cache siot 01

0,1, % 3 are RAMD, RAMY, RAMZ, RAM3 respeslively

cacha slot 11

0,1 ... E, F are st[3:0]

Fig. 160

U.S. Patent Aug. 17, 2004 Sheet 121 of 175 US 6,778,181 B1

16100

tan groug 10

3 tag group 11

a, 1,z 2ane RAMD, RAM1, RARME, RAMI respeciivaly
0.1 ... B F are s3]

Fig. 161

U.S. Patent Aug. 17, 2004 Sheet 122 of 175 US 6,778,181 B1

16200

Tud
bt

N
D

uxix.
NN

T[0§=0 |04 1
TIO]=1 | Ejf Fyl 0y 1,
T[0]=0 |0y '
T]:'D}=l Ez 5 ﬂn% 11

—

-y

M

cache zlot O cache siot 10
% cache slat 01 o cache siot 11

& 1,2 1 8re RAMA, RA3, RAM2 RAMS respectivaly
8,1 ... E, F are st[3:0]

Fig. 162

U.S. Patent

v

Aug. 17, 2004 Sheet 1

23 of 175

US 6,778,181 Bl

16300
pg0[1:0] = 01 \
2x2 texel of Group 01 | Group 00
upper left I
pixel yJRd
B 100
cache tag ref texel st0[3:0] = F ~———"1 Group 11 mask0[3:0]= 1001
entry RAM2 group 2 3 011 N
A
0 > masko[3]
Group 10
ot
00
10
11
" linear/tiled —p» L upper_left_tex_tag[1:0]
o1 pg0[1:0] —p UL_tex_entry[1:0]
01 ref texel —» Tag Group :
10 st0[3:0} Generation —p» upper_right_tex_tag{1:0] —— UR_tex_entry{1:0]
©n
5 1 | lower_left_tex_tag{1:0] —— LL_tex_entry{1:0]
g eegy
2 SEEE
S y
Vi i r
S 2 10] | lower_right_tex_tag[1:0]
10 LR_tex_entry[1:0]
1
00
[43]
1
10
1 read add[5:0] | tag graup(1:0] cache cache
v for LR tex (tsbst +2) entry(1:0] slot{1:0]
muxing the texel
- | addr to their RAM
let cache
* entry=01
read add[5:0] tag group[1:0] cache cache
Ram2 {Isbst +2) entry[1:0] slot{1:0]

S

Fig. 163

U.S. Patent Aug. 17, 2004 Sheet 124 of 175 US 6,778,181 B1

16400

Tewal Diesired bewal | 3R | Fight |
aribakon winbalioet | s | bes.
Argm RAR fale | righl

0 1 E

M0 SR B e B

swap in g ==

w

B swapinf=s e

|
|

ol
-
-
ol
i)

- swap in s =5 SwEp L= b

Fig. 164

U.S. Patent Aug. 17, 2004 Sheet 125 of 175 US 6,778,181 B1

AR AM?
AM3

R I R L I I R | - T

i HTRE
Tasel Flvusivm| dscond i Inlt | sight
eisrdisr arnbalizn £ b -;*.»,
Tmym AR Ty v

=T o s s>

L

78

L= B V)
Lat

1 1 30

swapin 5 == [eeted pamp right s ==

Fig. 165

U.S. Patent Aug. 17, 2004 Sheet 126 of 175 US 6,778,181 B1

16600

.

ra0[5:0] | ...| ra15[5:0] | | wd0[127:0]|.]wd3[127:0] | wa0[3:0] | ...|wa3[3:0] |we[3:0]

~ /

pass[P:0] | read_info | swpS[3:0]{swpLT[3:0] |swpRT[3:0]| write_info | last| rvalid[15:0]

\ /
V

Fig. 166

U.S. Patent Aug. 17, 2004 Sheet 127 of 175 US 6,778,181 B1

16704
’\» I 16706
[st013:01 [staz:01 | stgz:0) | st12(3:0 | | peol1:0] | peaf1:0] |pg8[1:0]|pg12[1:()]]

[wop3:0] | mag3:0} | m8[3:01 | m1213:01 | [iort:01[itt:01 | i201:0) | i301:0) | 5\ ~"16708

N A

Ipass[P:O] Ifonnat[7:0]|pm_info| st_info I pg_infolindex_info | miss[3:0] | last]
\ /

/-/ V

1
16702 color cache context

16700

Fig. 167

U.S. Patent Aug. 17, 2004 Sheet 128 of 175 US

H 16802
S > S >
T T
~ Group0l g
F
0
AAAAA 1
Y .
E F 0 1 E F 0 1
gss = 0 gss = 1
Fig. 168

6,778,181 Bl

16900
ra0{5:0] | ...| ral5[5:0] | |wdO[127:0]|...| wd3[127:0}| waO[3:0]; ...| wa3[3:0] | we[3:0]
/ \ _
pass[P:0] | read_info swaps[11:0] rvalid[15:0] | write_info | last
\ | N
r .)
color cache data store input
16902 16904

Fig. 169

U.S. Patent

17002

17004

Aug. 17, 2004

Sheet 129 of 175

17000

US 6,778,181 Bl

.= gz EBE¥R §IT 198 397 ¥35E 3§97 Sres 03¢
28238 [JJd ddd bdy b4d bbbd bbb dddd b B
RAMO RAM1 RAM2 RAM3
5 port: 5 port: S port: 5 port:
4 Read 4 Read 4 Read 4 Read
1 Write 1 Write 1 Write 1 Write
o v b ey b bl bl
VAL bl v b ey b
—™ Mux0 ™ Mux1 ™ Mux2 ™™ Mux3
5,t swizzle L s.tswizzle Lo st swizzle Lyl st swizzle

Py

4l

Lyl

I

-~
pass <—

rvalid <+—

{
|

tex | <
tex 2 <+—
tex 3 <+—

l
!

tex 5 +—f
tex 6 <

tex 8§ «+— h—

=)
»
Q
-

tex 10 «+—
tex 11 «+—

l
:

tex 13 <4—
tex 14 <4—

v
£
31

2

< tex 7 <

texture cache output

Fig. 170

/

valid +—

» stall

stall

U.S. Patent Aug. 17, 2004 Sheet 130 of 175

17104

[Jrano Erane
FElramr Fijranny

173 Gﬁf—\,

g | Teaddr[5:0F | miss | n[i:0]

X 1 y
Y

raw cache context

Fig. 173

US 6,778,181 Bl

U.S. Patent Aug. 17, 2004

17400

Sheet 131 of 175

Each color cache miss results ina 1 to 4
cycle conversion/fill time. Up to 4 misses
are generated per cycle by the color cache
tag unit.

A color cache entry is written in 1 cycle.

|

7
T

color cache tag unit
latency = 1

Y T stan

raw cache unit (please see
drawing for this unit)

i Tstall

format conversion unit
latency = 4
(1 to 4 cycles)

I T

color cache data store unit

latency = 2
(1 cycle to fill)

! f

data out stall_in

Fig. 174

US 6,778,181 Bl

U.S. Patent Aug. 17, 2004 Sheet 132 of 175 US 6,778,181 B1

17500

color cache

stall stall
context l T l T
one push per raw cache tag query raw cache aggregator and In each cycle 1to 4 requests
(this implies one or more color raw cache walker e posted and grouped into
cache miss). lz;t:nc;y B 21 sets of up to 4 requests per
(1 to 4 cycles) cycle. Each group takes one
1 l T stall cycle to walk (up to 4 total).
raw cache tag unit.
latency = 1
(1 cycle)
X
y
color cache
context FIFO In each cycle, 1 to 4 valid
: stall Tequests are pqsted to the tag
y unit. Each valid request
raw results in a cycle spent
cache memory system. emiting data from the data
context latency = 1 to 7?7 store.
/ FIFO
) i 7y 3
This data impacts
the cycle behavior,
but modeling the
FIFO may not be . stall
necessary.
raw cache data store
latency = 1
' } 1
color cache stall_in data out stall_in
context FIFO

data

Fig. 175

U.S. Patent Aug. 17, 2004 Sheet 133 of 175 US 6,778,181 B1

17600
Type Signal Description
input suta_start[50:0] Start parameter bus

Start data is transferred over two DVS cycles for
parameters determined from the parameter select bus.
e 1)W,X &Y parameters (one each per triangle)
cyclel: suta_start[50:0] == {23°bx, x[11:0], 4’bx, y[11:0]}
X &Y are 12b (int).
cycle?: suta_start[50:0] == {15°bx, start_w[35:0]}
W is 1.35b (int.frac).

e 2) Z parameter (up to one per triangle)

cyclel: suta_start[50:0] == {51°bx}

cycle?: suta_start[50:0] == {15°bx, start_z[35:0]}

Z is 1.35b (int.frac).

e 3) Qfbi parameter (up to one per triangle)

cyclel: suta_start[50:0] = {51’bx}

cycle?: suta_start[50:0] == {15°bx, start_z[35:0]}

Z is 1.35b (int.frac).

¢ 4567) ARGB (up to one each per texture)

cyclel: suta_start[50:0] == {51'bx}

cycle?: suta_start[50:0] == {26°bx, start_[argb][24:0]}
ARGB is 1.4.8.12b (sign.ovr.int.extra).

» 89) ST (up to one each per texture)

cyclel: suta_start[50:0] == {51°bx}

cycle?: suta_start[50:0] = {15°bx, start_[st][50:0]}
ST is 8.43b (int.frac).

e 10) Qtmu (up to one per texture)

cyclel: suta_start[50:0] == {51°bx}

cycle2: suta_start[50:0] == {start_Qtmu[50:0]}
Qtmu is 16.35b (int.frac).

Fig. 176A

U.S. Patent Aug. 17, 2004 Sheet 134 of 175 US 6,778,181 B1

17600
Type Signal Description
input suta_slope[50:0] Start parameter bus

Start data is transferred over two DVS cycles for
parameters determined from the parameter select bus.
e 1)W,X &Y parameters (one each per triangle)
cyclel: suta_start[50:0] == {15’bx, dw/dx[35:0]}
cycle?: suta_start[50:0] == {15°bx, dw/dy[35:0]}

W is 1.35b (int.frac).

e 2) Z parameter (up to one per triangle)

cyclel: suta_start[50:0] == {15°bx, dz/dx[35:0]
cycle2: suta_start[50:0] == {15’bx, dz/dy[35:0]}

Z is 1.35b (int.frac).

e 3) Qfbi parameter (up to one per triangle)

cyclel: suta_start[50:0] = {15°bx, dqfbi/dx[35:0]}
cycle2: suta_start[50:0] == {15°bx, dqfbi/dy[35:0]}
Z is 1.35b (int.frac).

e 4567) ARGB (up to one each per texture)

cyclel: suta_start[50:0] == {26°bx, d[argb)/dx[23:0]}
cycle2: suta_start[50:0] == {26°bx, d[argb]/dy[23:0]}
ARGB is 1.4.8.12b (sign.ovr.int.extra),

e §89) ST (up to one each per texture)

cyclel: suta_start[50:0] == {15°bx, d[st)/dx[50:0]}
cycle2: suta_start[50:0] = {15°bx, d[st}/dx[50:0]}
ST is 8.43b (int.frac).

e 10) Qtmu (up to one per texture)

cyclel: suta_start[50:0] = {dqtmu/dx[50:0]}

cycle2: suta_start[50:0] = {dqtmu/dy[50:0]}

Qtmu is 16.35b (int.frac).

Fig. 176B

U.S. Patent Aug. 17, 2004 Sheet 135 of 175 US 6,778,181 B1

17600
Type Signal Description
input suta_prmsel[3:0] Parameter select bus
Start and slope parameter select decode:
0:null

1 : WXY (up to one per triangle — always sent)

2 : Z (up to one per triangle)

3 : Qfbi (up to one per texture)

4,5,6,7: A, R, G, B (up to one per texture)

8, 9: S, T (up to one per texture)

10: Qtmu (up to one per texture)

11-15: reserved (decoded to load no parameters in VTA)
The parameters are received in the following order:
Wxy, [Z, Qp], [Qt, S, T, A, R, G, B}*.

e One Wxy per polygon.

¢ Up to one each of Z & Qp per polygon.

e Uptooneeachof Qt, S, T, A, R, G & B per iteration.
input suta_newtri New triangle indicator

Identifies the first parameter transfer cycle for a polygon.
The signal is active for the first cycle of the parameter data
transfer.

input suta_newitr New iteration indicator

Identifies the first parameter transfer cycle for each texture
iteration. The signal is active for the first cycle of the
parameter data transfer.

input suta_prmend Parameter end indicator

Identifies the last parameter transfer cycle-pair for a
polygon. The signal is active for both cycles of the
parameter data transfer.

input suta_itrnum[2:0] Iteration number

Identifies the iteration number of the current parameters.
This signal is valid for all data transfer cycles. Its behavior
is as follows:

itr0 for WXYZQfbi and itrN to O for ARGBSTQtmu.
input suta_valid DVS valid

output suta_stall DVS stall

Fig. 176C

U.S. Patent Aug. 17, 2004 Sheet 136 of 175 US 6,778,181 B1

17700
clk | [P IZb I L
newtri | [] b
newitr
prmend | [17800
Fig. 177 \
clk T T T O O O O
newtri | | | |
newitr | |
prmend | |
Fig. 178
17900
clk | {_b ol e T
newtri | | . | |
newitr | | - |
prmend . |

U.S. Patent Aug. 17, 2004 Sheet 137 of 175 US 6,778,181 B1

18000

Type Signal Description

input rata_newtri New triangle
Identifies the first quad of a new triangle.

input rata_newstate[2:0] New State
Three newstate bits. Each bit progresses down the pipe
triggering loads of active state from pending state at the
sideband. Bit [0] is dedicated for the TA module, bit [1] is
dedicated for the TD module and bit [2] is dedicated for the
PE module.

input rata_push[1:0] Push pixel iteration state
Encodes three push commands to save iteration state. The
two bits decode pushes as follows:
00: none
01: right
10: left
11: down
Note: Simultaneous push/pop/dir evaluates in time as push-
>pop->dir.

input rata_pop[1:0] Pop pixel iteration state

‘ Encodes three pop commands to restore iteration state. The

two bits decode pops as follows:
00: none
01: right
10: left
11: down

input rata_dir{1:0] Pixel iteration direction
Sets the parameter iterator direction, decoded as follows:
00: up
01: right
10: left
11: down

input rata_mask[19:0] Pixel0.1.2.3 coverage mask
Indicates the combined coverage masks of the pixel quad.
rata_mask[19:0] == {LR, LL, UR, UL} 5-bit pixel
coverage masks.
Where a coverage mask[5:0] == {c, Ir, 11, ur, ul} sub-
samples.

input rata_valid DVS valid

output rata_stall DVS stall

Fig. 180

U.S. Patent Aug. 17, 2004 Sheet 138 of 175 US 6,778,181 B1

18100
Type Signal Description
output tdpe_newstate New state
Pixel Engine newstate bit. This was bit [2] of rata newstate
[2:0].

output tdpe_ifb_type[1:0] LFB Type
Linear Frame Buffer Write Type decoded as follows:
0: non LFB
1: 3D LFB processed
2: 3D LFB bypasses
3: reserved
output tdpe_mask[19:0] Pixel Coverage Masks
When non-LFB,
[19:0] = {LR[5:0], LL[5:0], UR[S5:0], UL[5:0]} pixel
masks.
where a pixel mask equals mask[4:0] = {center, Ir, 11, ur,
ul}.
output tdpe_xy_addr[19:0] X and Y address
’ When non-LFB or XY-addressed LFB,
addr[19:0] == {X[10:1], Y[10:11}
output tdpe_r_pix0,1,2,3[12:0 | Red of 4 pixels (1.4.8)
] Pixels: {0,1,2,3} = {UL, UR,LL, LR}.
output tdpe_g pix01,2,3[12:0 | Green of 4 pixels (1.4.8)
] Pixels: {0,1,2,3} = {UL, UR,LL, LR}.
output tdpe_b_pix0,1,2,3[12: | Blue of 4 pixels (1.4.8)

0] Pixels: {0,1,2,3} =={UL, UR, LL, LR}.
output tdpe_a_pix0,1,2,3[12: | Alpha of 4 pixels (1.4.8)
0] Pixels: {0, 1,2,3} = {UL, UR, LL, LR}.

output tdpe_z_pix0[35:0] Z of upper left pixel (1.35)

When non-LFB,

pix0[35:0] = Z of the upper left pixel.

When XY address based LFB,

pix0[35:0] = {1’b0, lib-left-depth[15:0], 20°b0} or
pix0[35:0] = {1°b0, lfb-left-depth[31:0], 4’b0}.
where lfb-left-depth come from the LFB Unit.

Fig. 181A

U.S. Patent Aug. 17, 2004 Sheet 139 of 175 US 6,778,181 B1

18100

Type Signal Description

output tdpe_z_dx[38:0] dZ/dX of a quad (4.35)
When non-LFB,
dx[38:0] = dZ/dx of the upper left pixel.
When XY address based LFB,
dx[38:0] = {4°b0, 1fb-right-depth[15:0], 20°b0} or
dx[38:0] = {4°b0, lfb-right-depth{31:0], 4°b0} or
where lfb-right-depth come from the LFB Unit.

output tdpe_z_dy[38:0] dZ/dY of a quad (4.35)
When non-LFB, this bus equals the dZ/dy of the upper left
pixel.

When LFB, this bus is set low.

output tdpe_q_pix0{35:0] Ope of upper left pixel (1.35)

When non-LFB,

pix0[{35:0] = Q of the upper left pixel.

When XY address based LFB,

pix0[35:0] = {1°b0, lfb-left-qpe[15:0], 20°b0} or
pix0[35:0] = {1°b0, lb-lefi-qpe[31:0], 4°b0}.
where Ifb-left-qpe come from the LFB Unit.
output tdpe_q_dx[38:0] dQ/dX of a quad (4.35)

When non-LFB,

dx[35:0] = dQ/dx of the upper left pixel.

When XY address based LFB,

dx[35:0] = {1°b0, lfb-right-qpe[15:0], 20°b0} or
dx[35:0] = {1°b0, lfb-right-qpe[31:0], 4’b0}
where Ifb-right-gpe come from the LFB Unit.

output tdpe_q_dy[38:0] dQ/dY of quad (4.35)
When non-LFB, this bus equals the dQ/dy of the upper left
pixel.
When LFB, this bus is set low.

output tdpe_valid DVS valid

input tdpe_stall DVS stall

Fig. 181B

U.S. Patent Aug. 17, 2004 Sheet 140 of 175 US 6,778,181 B1

18200
Type Signal Description
input ceta_valid Side-band transfer valid
input ceta_addr[11:0] Side-band adr
Decoded as,
{11:8] == TMU Unit & Palette decode
[7:0] = TMU register space.
input ceta_data[31:0] Side-band data
Data of register or palette writes.
output tace_rcvstate Texture address unit receive state
Indicates the completion of newstate within the TA
pipeline.
This signal is merely a feedback version of the TA
newstate extracted from the bottom of the TA pipe.
output tace_busy Texture addres unit busy
Indicates the existence of a valid active data within the
pipeline or a FIFQ in the Texture Address Unit.

Fig. 182A

U.S. Patent Aug. 17, 2004 Sheet 141 of 175 US 6,778,181 B1

18200
Type Signal Description
input cetd_valid Side-band transfer valid
input cetd_addr[21:0] Side-band address
Decoded as
1) [21:0] = {10°bx, TMU Unit Select [3:0], register
select [7:0]}
2) [21:0] = {LFB X address [10:0], LFB Y address
[10:0]}
input cetd_data[31:0] Side-band data
Data for register writes, palette loads and LFB transfers.
input cetd_1fb_be_n[3:0] Side-band 1fb byte enables
The byte enables for XY and Physically addresses LFBs.
XY address based LFBs may have byte pairs enabled. For
these transactions, the byte enable pairs enable writes to the
left and right pixels of the quad.
Physical address based LFBs may have individual bytes
enabled. For these transactions, the byte enables effect no
data; the byte enables are merely transferred to the PE
through the pixel coverage mask bus.
This signal is invalid during non-LFB transations.
input cetd_1fb_valid Side-band LFB transfer valid
Identifies a valid LFB data transfer.
output cetd_lfb_stall Side-band LFB stall
Indicates a stalled LFB data transfer.
output tdce_rcvstate Texture data unit receive state
Indicates the completion of newstate within the TD
pipeline.
This signal is merely a feedback version of the TD
| newstate extracted from the bottom of the TD pipe.
output tdce_busy Texture data unit busy
Indicates the existence of a valid active data within the
pipeline or a FIFO in the Texture Data Unit.
output tcce_busy Texture cache unit busy
Some module or FIFO in the texture cache has valid active
data.

Fig. 182B

U.S. Patent Aug. 17, 2004 Sheet 142 of 175

US 6,778,181 Bl

18300
Type Signal Description
output tamc_maddress[31:5] | texture request memory address
output tamc_mmode[2:0] texture memory address mode
output teme_valid DVS valid
input tcmc_stall DVS stall
Fig. 183
18400
Type Signal Description
input mctc_mdata[255:0] texture memory data
input mctc_valid DVS valid
output mctc_stall DVS stall

Fig. 184

U.S. Patent

18500

Aug. 17, 2004

Sheet 143 of 175

US 6,778,181 Bl

purpose unit | count | read | write | depth | width comments
ta sideband ta 1 1 1 16 15 | All of these rams could be made
registers 1 1 1 16 17 | from
(9inta) 1 1 1 16 24 | Irlw_16d32w RAMs.
1 1 1 16 30
1 1 1 16 31
4 i 1 16 32
td sideband td 2 1 1 16 26 | All of these rams could be made
registers 2 1 1 16 28 | from
(12 in td) 2 1 1 16 29 | triw_16d32w RAMs.
4 1 I 16 32
ta setup ta 2 3 1 64 36 | s,t: 64x36b
fifos 1 3 1 64 51 | qt: 64x51b
(3inta)
td setup td 1 1 1 32 22 | xy: 32x22b
fifos 4 3 1 64 25 | a,r,g,b: 64x25b
(7 in td) 2 1 1 64 36 | gp,z: 64x36b
td iterator ta 2 1 1 32 36 | s,t: 32x36b
state 1 1 1 32 51| qt: 32x51b
(4 intd)
ta iterator td 4 1 1 32 25| a,r,g,b: 32x25b
state
(3inta)
accumulate td 2 1 1 16 128 | Depth of 16 supports packets of 10
fifo to16 quads. Two rams of 128b are
(1) used to create a 16x256b RAM
equivalent.

Fig. 185A

U.S. Patent

18500

Aug. 17, 2004

Sheet 144 of 175

US 6,778,181 Bl

purpose unit count | read | write | depth [width comments
recursion ta 1 i 1 60 190 | Depth of 60 supports 6 packets of 10
fifo quads.
) Width of 190 supports
RGB*13b*4pix + pstate (34 bits).
color tc 4 1 1 16 128 | The 4 read ports read 128 bits into 4
cache sets of 4-to-1 muxs to generate 4 32-
4) bit buses.
raw tc i 1 1 16 256.
cache
color tc 1 1 1 128 188
context
raw tc 1 1 1 128 16
context
palette tc 1 1 1 256 24
ta 16 - - - - | Ideal RAMs. Many will likely be
totals td 24 split.
tc 8
all 48

Fig. 185B

U.S. Patent

18600

Aug. 17, 2004

Sheet 145 of 175

US 6,778,181 Bl

VTA GateCount

Gates/bits, small rams 4

Gates/bit, big rams 2

fpmultGates 10000

fpaddGates 2891

fpSquares 3379

lerp module 1468

Gates/Flop 10) Bits Bits
Module [Block pix/clk |qty |gates/bl [tot gates|Mod Total {Large Small

k RAM Ram

STaddressGenerator 2 92630,

Full SOW/TOW/QOW lIterator 2 31 4519] 13557 2304

Partial SOW/TOW/O0W 2 3 1369 4107 1152

Iterators

Winverter, S, T multiplier 2] 2] 32483] 64966

Instruction Dispatch & Control 2 Il 10000 10000,

(Swag)

Fifos for S, T generation 2 1 0 0 1536
L.ODcirc 2 0 43904
uit

multiplies 2 1 24971 2497

Adds 2] 7 2891} 20237

Squares 2 2| 585 1170

Misc 2 2] 10000 20000
Stscaler 2 0 2048

16-bit shifters 2 4 192 768

16-bit adder 2 4 0

Pipe Stage 2 4 320 1280
KemalW |Taken from T Esitmates 2 21 10822 21644 21644
alker

Fig. 186A

U.S. Patent

18600

Aug. 17, 2004

Sheet 146 of 175

US 6,778,181 Bl

TextureCache 2 0 89139
Logic (T Estimate) 2 1] 20931} 20931
Cache RAMs 2| 8 4096] 32768 16384
Cache RAM Ports 2l 24 200{ 4800
Fifos for Fractions, Texture Tags, 2 1 0 5200
and Kemal ID (100 deep)
Pallette, 1wdr 256x32 2 1 640 640 8192
Texture Decompression Unit 2 1] 20000f 20000
Misc 2] 1] 10000[10000
Filter 2| 0 85488
Lerp Unit 2| 48 14681 70464
Chroma Key Unit 2| 2] 13321 2664
Adder 2) 16 3001 4800
Coefficient Lookup 2 1 200 200
Multiplier 2] 16 4601 7360
Colorlterator 2] 0 12780
Attribute FIFO 2) 0 3072
Initial Color Iterator 2 4 2138
Additional Color Iterator 2 4 891 3564
RAMs 2| 12 7681 9216 2304
CombineUnit 2) 0 52224
f(a-b)+c modules 2] 24 1756] 42144
Accumulator 2 8 1260} 10080
RecursionPath 2| [13248
2x2 Transform: a*b+c*d 2| 8 1576 12608
Register stage 2] 2 3204 640
Slop 30%)| 123931.5
Total gate Count 537036.5 32848, 7296

Fig. 186B

U.S. Patent

Aug. 17, 2004

18700

Sheet 147 of 175

US 6,778,181 Bl

STG - S and T Generator

Test

Test iterator SOW, TOW and OOW limits and iterations

TA_STG_IT.EXE

Test Quad neighbor generation

TA_STG_IT.EXE

Test delta adds to SOW, TOW,00W (recursion push, pop)

TA_STG_FI_RECUR.EXE

Test integer to float math

TA_STG_IT.EXE
Many others

Test negative W clamp of S, T

TA_LMS_RC.EXE
TA_STG_IT.EXE
TA_LMS_FLEXE

Test S, T and W shifts

TA_STG_RC_RECUR.EXE

Test limits of W reciprocal unit

TA_STG_IT.EXE

Test post W multiply TA_STG_FI_RECUR.EXE
Test log2 ST bias TA_STG_FI_RECUR.EXE
Test post perturb LMS TA_STG_FI_RECUR.EXE

Test register variations as defined in Table 1.

TA_STG_RC.EXE

Fig. 187

18800

LMS - Log of Map Size Calculation Test
Test generation of all valid LMS values (0-11) TA_LMS_FIL.EXE
TC_STP.EXE

Test range of aniratio

TA_LMS_FLEXE

Test aniratio clamping

TA_LMS_FLEXE

Test aniratio scaling

TA_LMS_FIL.EXE

Test limits of dsdc and dsdt outputs

TA_LMS_MO_DPDC.EXE

Test register variations as defined in Table 1.

TA_LMS_RC.EXE

Fig. 188

U.S. Patent

Aug. 17, 2004

18900

Sheet 148 of 175

KER — Kernel Walker

Test

Test bilinear, trilinear, and anisotropic modes

TA_LMS_FLEXE

Test texturing modes with defined and random anisotropic
ratios to exercise different number of kernel step sizes and

steps

TA_LMS_FLEXE

Test lookup table to ensure all 256 entries are touched

TA_LMS_FIL.EXE???

Fig. 189

19000

TAD/TC - Texture Address / Cache Units Test

Test legacy modes (split, odd, Ofrac, old trilinear) TC_LEG.EXE

Test linear and tiled textures TC_STP.EXE

Test ST wrap modes TC_STP.EXE

Test NPT textures TC_NPT.EXE

Test textures up to 2048x2048 TC_STPEXE

Test texture aspect ratios TC_STP.EXE

Test all texture formats TC_FMT.EXE

Test LMS dither TC_DIT.EXE
TA_ILMS_RC.EXE

Test memory base address modes TC_MBA.EXE

Test AGP/Local memory access TC_MBA.EXE

Test staggered tiling mode TC_MBA.EXE

Test register variations as defined in Table 1 TC_MBAEXE
TC_NPT.EXE

Fig. 190
18100
FLT - Filter Unit Test
Test point sampling, bilinear, trilinear, anisotropic bilinear Many tests

and anisotropic trilinear

Test chromakey functions

TD_RANDCHROMA.EXE

Test LIRP equation W*(A-B)}+B

Many tests

Test clamping

Many tests

Fig. 191

US 6,778,181 Bl

19200

U.S. Patent Aug. 17, 2004 Sheet 149 of 175 US 6,778,181 B1

COM - Combine Unit Test

TCC Test each of 10 possible source inputs TD_TCU.EXE
TCC Test each of 4 invert functions TD_TCU.EXE
TCC Test (A+B)*C +D equation TD _TCU.EXE
TCC Test min/max select mux TD_TCU.EXE
TCC Test Output Clamp function TD_TCU.EXE
TCA Test each of 6 possible source inputs TD_TCU.EXE
TCA Test each of 4 invert functions TD_TCU.EXE
TCA Test (A+B)*C +D equation TD_TCU.EXE
TCA Test min/max select mux TD_TCU.EXE
TCA Test Output Clamp function TD_TCU.EXE
CCC Test each of 15 possible source inputs TD_CCU.EXE
CCC Test override mux select for B,C, & C inputs TD_CCU.EXE
CCC Test chroma key function TD_RANDCHROMA.EXE
CCC Test zero/A mux TD_CCU.EXE
CCC Test each of 4 invert functions TD_CCU.EXE
CCC Test (A+B)*C +D equation TD_CCU.EXE
CCC Test min/max select mux TD_CCU.EXE
CCC Test Output Clamp function TD_CCU.EXE
CCA Test each of 9 possible source inputs TD_CCU.EXE
CCA Test alpha mask function TD_CCU.EXE
CCA Test zero/A mux selection TD_CCU.EXE
CCA Test each of 4 invert functions TD_CCU.EXE
CCA Test (A+B)*C +D equation TD_CCU.EXE
CCA Test min/max select mux TD_CCU.EXE
CCA Test Output Clamp selection TD_CCU.EXE
Test overbright color paths TD_RANDTRI.EXE
Test 4 term dot product, 3 term dot product, 2x3 matrix

multiply

Test limits of output clamping modes TD_COM_IT.EXE
Test corner cases for math functions TD_COM_IT EXE

Fig. 192

U.S. Patent Aug. 17, 2004 Sheet 150 of 175 US 6,778,181 B1
19300

ACC - Accumulator Test

Test accumulator add TD_ACC.EXE

Test accumulator load TD_ACC.EXE

Test 4 accumulator shift positions TD_ACC.EXE

Test limits of output clamp function TD_ACC.EXE

Fig. 193
19400
Iterators Test

Test iterator widths

TA_STG_IT.EXE
TD_COM_IT.EXE

Test multiple TMU iterations

TD_RANDTRI.EXE
TA_LMS_RC.EXE

Test AA coverage mask correction

Fig. 194

19500

.

Sideband

Test

Test state changes (last used)

TA_LMS_RC.EXE

Fig. 195

U.S. Patent Aug. 17, 2004 Sheet 151 of 175 US 6,778,181 B1

19600

Texture mapping: Test

8-Iterations of different texture maps, combine TD_RANDTRI.EXE
4 levels of texture recursions

several tests with different combinations of push/pop states

Render a texture suitable to test clamp/repeat/mirror and TC_STP.EXE
clamp to black caps
Texture combining TA_LMS_FI_LMS2TCU.EXE

TA_LMS_FI_DETAIL.EXE

Texture recursion (address perturbation)
Bump mapping

Shadow mapping
Different texture formats TC_FMT.EXE
Non-power of two textures TC _NPT.EXE
Fig. 196
19700
Lighting Test
Overbright and underbright light handling LIGHT.EXE
Fig. 197
19800
Math Test
Test Dot Product and Matrix Multiply MATH.EXE

Fig. 198

U.S. Patent

Aug. 17, 2004

Sheet 152 of 175

US 6,778,181 Bl

19900
REGISTER Mod. | Test Name Comments
TaControl Fields
NUM_TMUS 8TG, | Ta_stg_fi_recur.c, _grRebuildbatalList,
REC ta_stg_rc.c _grvValidateState
REC_PUSH STG, | Ta_stg fi_ recur.c, _grvalidateState,
REC ta_stg_rc.c grTexRecursionExt
REC_POP STG, | Ta_stg_fi_recur.c, _grvalidateState,
REC ta_stg_rc.c grTexRecursionExt
DISPATCH ID Not in CSIM ??
PUSH LIMIT REC ??
RAW CACHE DISABLE Not in CSIM Not exposed by GlideX
COLOR CACHE DISABLE Not in CSIM Not exposed by GlideX
taMode Fields
EN_TEXTUREMAP LMS All GrTexSource=1,
grTexSourceExt=1
MINFILTER LMS, | Ta_lms_fi.c, GrTexFilterMode
FLT Ta_lms_rc.c
MAGFILTER LMS, | Ta_lms_fi.c, GrTexFilterMode
FLT Ta_lms_rc.c
MAX_ANI_RATIO LMS Ta_lms_fi.c, GrTexAnisotropicMaxRat
Ta lms rc.c ioExt
UNIT_STEP_SIZE LMS Ta_lms_fi.c, Not exposed by glide
Ta lms rc.c
ANI RSCALE_LOG2 LMS Ta_lms_fi.c, ??
Ta lms rc.c
ANI MIN FORCE ARl LMS Ta_lms_rc.c ??
CLAMPW LMS Ta_lms_rc.c GrTexSource=1,
grTexSourceExt=1
LMS DITHER LMS TC_DIT.c GrTexMipMapMode
LOD_2_TCU_SEL LMS ta_lms_fi_lms2tcu.c | GrTexLODSelectExt,
grTexCombine
OLD TRILINEAR LMS TC_LEG.c GrTexMipMapMode
WRAP S TAD TC_STP.c GrTexClampMode
WRAP T TAD TC_STP.c GrTexClampMode
TEX IS TILED TAD TC_STP.c GrTexSource,
- = grTexSourceExt
FORMAT TAD TC_FMT.c GrTexSource,
grTexSourceExt

Fig. 199A

U.S. Patent

Aug. 17, 2004

Sheet 153 of 175

US 6,778,181 Bl

19900
REGISTER Mod. | Test Name Comments
talMS Fields
LMS_MIN MS Ta_lms_fi.c, GrTexSource,
Ta_lms_rc.c grTexSourceExt,
grTexMipMapMode
LMS_MAX LMS Ta_lms_fi.c, GrTexSource,
Ta_lms_rc.c grTexSourceExt,
GrTexMipMapMode
LMS_BIAS LMS Ta_lms_fi.c, GrTexLodBiasValue
Ta lms rc.c
LMS_LAR LMS, | TC_STP.c GrTexSource
TAD
LMS_S_1IS_LARGER 1MSs, TC_STP.cC GrTexSource
TAD
LMS ZERQO FRAC LMS TC_LEG.c 2?2
LMS_ODD 1MS TC_LEG.c GrTexMipMapMode,
grTexSource,
grTexCombine
LMS_TSPLIT LMS, | TC_LEG.c GrTexMipMapMode
TAD
LMS_MBA_ MODE LMS, | TC_MBA.c GrTexMultibase,
TAD grTexMultiBaseModeExt
EN_NPT IMS, | TC_NPT.c GrTexSourceExt
TAD
tashiftBias Fields
REC POST WMULT STG Ta_stg_fi_recur.c GrTexPerturbExt
REC ST SHIFT STG Ta_stg_fi_recur.c GrTexPerturbExt
REC W SHIFT STG Ta_stg_£i_recur.c GrTexPerturbExt
S BIAS LOG2 LMS Ta_stg_fi_recur.c GrTexPerturbExt
T BIAS LOG2 LMS Ta_stg_fi_recur.c GrTexPerturbExt
POST PERTURB LMS LMS Ta_stg_fi_recur.c GrTexPerturbExt
taDetail Fields
DETAIL MAX LMS Ta_lms_fi detail.c GrTexDetailControl
DETAIL BIAS LMS Ta_lms_fi_detail.c GrTexDetailControl
DETAIL SCALE LMS Ta_lms_fi_detail.c GrTexDetailControl
TEXEL AREA SCALE LOG2 LMS Ta_lms_fi_detail.c ??
taNPT Fields
NPT S MAX TAD TC_NPT.c GrTexSourceExt
NPT S STRIDE TAD TC_NPT.cC GrTexSourceExt
NPT T MAX TAD TC_NPT.c GrTexSourceExt

Fig. 199B

U.S. Patent Aug. 17, 2004 Sheet 154 of 175 US 6,778,181 B1

19900
REGISTER Mod. | Test Name Comments
taBaseAddr0 Fields
TEX__AGP TAD TC_MBA.c GrTexSource,
grTexSourceExt
TEX_STAGGERED TAD TC_MBA.c GrTexSource,
grTexSourceExt
NPT TM TAD TC_NPT.c ??
TEX__BAS E_ADDR TAD TC_MBA.c GrTexSource,
grTexSourceExt
taTcuColor Fields
TCC A SELECT COM TD_TCU.c grTexCombineColorExt
TCC B SELECT CcoM TD_TCU.c grTexCombineColorExt
TCC C SELECT COM TD_TCU.c grTexCombineColorExt
TCC D SELECT COM TD_TCU.c grTexCombineColorExt
TCC A MODE COM TD_TCU.c grTexCombineColorExt
TCC B MODE COM TD_TCU.c grTexCombineColorExt
TCC C MODE COM TD_TCU.c grTexCombineColorExt
TCC D MODE COM TD_TCU.c grTexCombineColorExt
TCC QUT CLAMP COM TD_TCU.c grTexCombineColorExt
TCC EN MIN MAX COM TD_TCU.c grTexCombineColorExt
TCC TEX SHIFT COM TD_TCU.c grTexCombineColorExt
taTcuAlpha Pields
TCA A SELECT COM TD_TCU.c grTexCombineAlphaExt
TCA B SELECT COM TD_TCU.c grTexCombineAlphaExt
TCA C SELECT coM TD_TCU.c grTexCombineAlphaExt
TCA D SELECT COM TD_TCU.c grTexCombineAlphaExt
TCA A MODE COM TD_TCU.c grTexCombineAlphaExt
TCA B MODE COM TD_TCU.c grTexCombineAlphaExt
TCA C MODE COM TD_TCU.c grTexCombineAlphaExt
TCA D MODE COM TD_TCU.c grTexCombineAlphaExt
TCA OUT CLAMP CoOM TD_TCU.c grTexCombineAlphaExt
TCA EN MIN MAX COM TD_TCU.c grTexCombineAlphaExt
TCA TEX SHIFT COM TD_TCU.c grTexCombineAlphaExt

Fig. 199C

U.S. Patent Aug. 17, 2004 Sheet 155 of 175 US 6,778,181 B1

19900

REGISTER Mod. | Test Name Comments

taCcuColor Fields

CCC A SELECT COM TD_CCU.c grColorCombineColorExt
CCC B SELECT COM TD _CCU.c grColorCombineColorExt
CCC C SELECT CoM TD_CCU.c grColorCombineColorExt
CCC D SELECT COM TD CCU.c grColorCombineColoxExt
CCC A MODE COM TD_CCU.c grColorCombineColorExt
CCC B MODE COM TD_CCU.c grColorCombineColorExt
CcCC C MODE COM TD_CCU.c grColorCombineColorExt
CCC D MODE COM TD_CCU.c grColorCombineColorExt
C¢CC OUT MODE COM TD_CCU.c grColorCombineColorExt
CCC _OUT CLAMP COM TD_CCU.c grColorCombineColorExt
CCC EN MIN MAX COM TD_CCU.c grColorCombineColorExt
CCC_OVERRIDE_ATEX COM Needs to be added _grUpdateCCU
to td ccu.c

CCC A ZERO COM TD_CCU.c _grUpdateCCU

ACC LOAD ACC TD_ACC.c grAccumCombineExt

ACC ADD ACC TD_ACC.c grAccumCombineExt

taCculAlpha Fields

CCA A SELECT COoM TD_CCU.c grColorCombineAlphaExt
CCA_ B SELECT COM TD CCU.c grColorCombineAlphaExt
CCA C SELECT COM TD_CCU.c grColorCombineAlphaExt
CCA D SELECT COM TD_CCU.c grColorCombineAlphaExt
CCA A MODE COM TD_CCU.c grColorCombineAlphaExt
CCA B MODE COM TD_CCU.c grColorCombineAlphaExt
CCA C MODE COoM TD_CCU.c grColorCombineAlphaExt
CCA D MODE COM TD_CCU.c grColorCombineAlphaExt
CCA OUT MODE COM TD_CCU.c grColorCombineAlphaExt
CCA OUT CLAMP COM TD_CCU.c grColorCombineAlphaExt
CCA EN MIN MAX ° COM TD_CCU.c grColorCombineAlphaExt
CCA_EN_ALPHA MASK COM TD_CCU.c ??

CCA A ZERO COM TD_CCU.c _grUpdateCCU

ACC SHIFT ACC TD_ACC.c ??

taTexChromaKey Fields

TCHROMA KEY BLUE FLT TD_RANDCHROMA . ¢

TCHROMA KEY GREEN FLT TD_RANDCHROMA . c

TCHROMA KEY RED FLT TD_RANDCHROMA.c

TCHROMA MODE FLT TD_RANDCHROMA. ¢

Fig. 199D

U.S. Patent Aug. 17, 2004 Sheet 156 of 175 US 6,778,181 B1

19900

REGISTER Mod. | Test Name Comments

taTexChromaRange Fields

TCHROMA RANGE BLUE UPPER LIMIT FLT TD_RANDCHROMA.cC
TCHROMA RANGE GREEN UPPER LIMIT | FLT TD_RANDCHROMA.c
TCHROMA_ RANGE RED UPPER LIMIT FLT TD_RANDCHROMA.c
TCHROMA RANGE BLUE EX FLT TD_RANDCHROMA.cC
TCHROMA RANGE GREEN EX FLT TD_RANDCHROMA.c
TCHROMA RANGE RED EX FLT TD_RANDCHROMA.cC
TCHROMA RANGE BLOCK OR FLT TD_RANDCHROMA.cC

taChromaKey Fields

CHROMA KEY BLUE COM | TD_RANDCHROMA. ¢
CHROMA KEY GREEN COM | TD_RANDCHROMA.c
CHROMA_KEY RED COM | TD_RANDCHROMA. ¢
CHROMA MODE COM | TD_RANDCHROMA.c

tachromaRaqge Fields

CHROMA RANGE BLUE UPPER LIMIT COM TD_RANDCHROMA.c
CHROMA RANGE GREEN UPPER LIMIT COM TD_RANDCHROMA.cC
CHROMA RANGE RED UPPER LIMIT COM TD_RANDCHROMA. ¢
CHROMA RANGE BLUE EX COM TD_RANDCHROMA. ¢
CHROMA RANGE GREEN EX COM TD_RANDCHROMA.c
CHROMA RANGE RED EX COM TD_RANDCHROMA.c
CHROMA RANGE BLOCK OR COM TD_RANDCHROMA.c

taColorARO Fields
CONSTANT COLORO RED COM TD_CCU.c
CONSTANT COLOR(O ALPHA COM TD_CCU.c

taColorGBO Fields
CONSTANT COLORO BLUE COM TD_CCU.c
CONSTANT COLORO GREEN COM TD_CCU.c

taColorARl Fields
CONSTANT COLOR1 RED COM TD_CCU.c
CONSTANT COLOR1 ALPHA CoM TD_CCU.c

taColorGBl Fields .
CONSTANT COLOR1 BLUE COM TD_CCU.c
CONSTANT COLOR1 GREEN COM TD_CCU.c

Fig. 199E

U.S. Patent

20000

Aug. 17, 2004

Sheet 157 of 175

US 6,778,181 Bl

Module Under Test
e Software Interaction

Module Level Diagnostic

Comments

patcher (ta_dis)

Dis

ta_num_tex[2:0]

ta_rec_push[7:1]

ta_rec_pop[6:0]

ta_rec_dispatch_id

ta_rec_push_limit[2:0]

ta_dis_raw_cache

ta_dis_color_cache

S and T Generator (ta_stg)

ta_rec_pop[6:0]

ta_rec_st_shift[7:0]

ta_rec_w_shift[7:0]

Log of Map Size (ta_lms)

ta_en_texture

ta_min_filter[1:0]

ta_mag filter{1:0]

ta_max_ani_ratio[3:0]

ta_clamp_w

ta_lms_dither

ta_lms2tcu_sel(1:0]

ta_old_trilinear

ta_Ims_min[5:0}

ta_lms_max[5:0]

ta_lms_bias[5:0]

ta_lms_zero_frac

ta_Iims_odd

ta_lms_log aspect[3:0]

ta_lms_s_is_larger

ta_lms_tsplit

ta_s_bias_log2[3:0]

ta_t bias_log2[3:0]

ta_detail_max[7:0]

ta_detail_bias[5:0]

ta_detail_scale[2:0]

Fig. 200A

U.S. Patent Aug

20000

N

.17, 2004

Sheet 158 of 175

US 6,778,181 Bl

Module Under Test
o Software Interaction

Module Level Diagnostic

Comments

Kernel Walker (ta_ker)

e ta_min_filter[1:0]

o ta_mag_filter[1:0]

e ta_max_ani_ratio[3:0]

Texture Address (ta_tad)

ta_wrap_s[1:0]

ta_wrap_t[1:0]

ta_tex_is_tiled

ta_tex_format[4:0]

ta_lms_log_aspect[3:0]

ta_lms_s_is_larger

ta_lms_tsplit

ta_lms_mba_mode[1:0]

ta_lms_en_npt

ta_npt_s_max[10:0]

ta_npt_s_stride[8:0]

ta_npt_t_max[10:0]

ta_tex_agp

e ta_tex_ staggered

e ta_tex_base_addr[31:5]

Filter Unit (ta_flt)

» ta_min_filter[1:0]

e ta_mag filter[1:0]

e ta_max_ani_ratio[3:0]

Fig. 200B

U.S. Patent

20000

.

Aug. 17, 2004

Sheet 159 of 175

US 6,778,181 Bl

Module Under Test
¢ Software Interaction

Module Level Diagnostic

Comments

Combine Unit (ta_com)

ta_tcc_a_select[3:0]

ta_tcc_b_select[3:0]

ta_tcc_c_select[3:0]

ta_tcc_d_select]3:0]

ta_tcc_a_mode[1:0]

ta_tcc_b_mode[1:0]

ta_tcc_c_mode[1:0]

ta_tcc_d_mode[1:0]

ta_tcc_out_clamp

ta_tcc_en_min_max

ta_tcc_tex_shift[2:0]

ta_tca_a_select[3:0]

ta_tca_b_select[3:0]

ta_tca_c_select[3:0]

ta_tca_d_select][3:0]

ta_tca_a_mode[1:0]

ta_tca_b_mode[1:0]

ta_tca_c_mode[1:0]

ta_tca_d_mode[1:0]

ta_tca_out_clamp

ta_tca_en_min_max

ta_tca_tex_shift[2:0}

ta_ccc_a_select[3:0]

ta_ccc_b_select[3:0}

ta_ccc_c_select[3:0]

ta_ccc_d_select[3:0]

ta_ccc_a_mode[1:0] °

ta_ccc_b_mode[1:0]

ta_ccc_c_mode[1:0]

ta_ccc_d_mode[1:0]

[K EE K N NN

ta_ccc_out_mode[1:0]

ta_ccc_out_clamp

ta_ccc_en_min_max

ta_ccc_override_atex

ta_ccc_a_zero

ta_acc_load

Fig. 200C

U.S. Patent Aug. 17, 2004 Sheet 160 of 175 US 6,778,181 B1

20000

-

Module Under Test Module Level Diagnostic Comments
e Software Interaction

Combine Unit (ta_com)

e ta_acc_add

e ta cca_a_select[3:0]
ta_cca_b_select{3:0]
ta_cca_c_select[3:0]
ta_cca_d._select[3:0]
ta_cca_a_mode[1:0]
ta_cca_b_mode[1:0]
ta_cca_c_mode[1:0]
ta_cca_d_mode[1:0}
ta_cca_out_mode[1:0]
ta_cca_out_clamp
ta_cca_en_min_max
ta_cca_en_alpha_mask
ta_cca_a_zero
ta_acc_shift[1:0]
ta_color0,1_a[12:0]
ta_color0,l_1[12:0]
ta_color0,1_g[12:0]
ta_color(,1_b[12:0]
ta_tchroma_r[7:0]
ta_tchroma_g[7:0]
ta_tchroma_b[7:0]
ta_tchroma_mode[1:0]
ta_tchroma_min_alpha
ta_tchroma_max_alpha
ta_tchroma_range_r[7:0]

e ta_tchroma_range g[7:0]
s ta tchroma_range_b[7:0]

* o |® o

e ta tchroma_ran ge_r_ex

e ta tchroma range g ex

e ta_tchroma_range b_ex

¢ ta_tchroma_range_block
_or

s ta_cchroma_r[7:0]

e ta_cchroma_g[7:0]

e ta_cchroma_b[7:0]

Fig. 200D

U.S.

Patent

20000

.,

Aug. 17, 2004

Sheet 161 of 175

US 6,778,181 Bl

Module Under Test
o Software Interaction

Module Level Diagnostic

Comments

Combine Unit (ta_com)

ta_acc_add

ta_cca_a_select[3:0]

ta_cca_b_select]3:0]

ta_cca_c_select[3:0]

ta_cca_d_select[3:0]

ta_cca_a_mode[1:0]

ta_cca_b_mode[1:0]

ta_cca_c_mode[1:0]

ta_cca_d_mode[1:0]

ta_cca_out_mode[1:0]

ta_cca_out_clamp

ta_cca_en_min_max

ta_cca_en_alpha_mask

ta_cca_a_zero

ta_acc_shift[1:0]

ta_color0,1_a[12:0]

ta_color0,1_1[12:0]

ta_color0,1_g[12:0]

ta_color0,1_b[12:0]

ta_tchroma_r[7:0]

ta_tchroma_g[7:0]

ta_tchroma_b[7:0]

ta_tchroma_mode[1:0]

ta_tchroma_min_alpha

ta_tchroma_max_alpha

ta_tchroma_range_r[7:0]

ta_tchroma_range_g[7:0]

ta_tchroma_range_b[7:0]

ta_tchroma_range r ex

ta_tchroma range g ex

ta_tchroma_range_b_ex

ta_tchroma_range_block
_or

ta_cchroma_x[7:0]

ta_cchroma_g[7:0]

ta_cchroma_b[7:0]

Fig. 200E

U.S. Patent

20000

.,

Aug. 17,2004 Sheet 162 of 175

US 6,778,181 Bl

Module Under Test
e Sofiware Interaction

Module Level Diagnostic

Comments

Combine Unit (ta_com)

ta_cchroma_mode[1:0]

ta_cchroma_range_r[7:0}

ta_cchroma_range_g[7:0]

ta_cchroma_range_b[7:0]

ta_cchroma_range r_ex

ta_cchroma_range_g ex

ta_cchroma_range b_ex

ta_cchroma_range_block
_or

Fig. 200F

U.S. Patent Aug. 17, 2004 Sheet 163 of 175 US 6,778,181 B1

20100
» Features Modes Diags
o All module level tests consistent state
¢ Small to large polygons random state

0 to 8 textures

* 0to 8 RGBAs

® Q) and Z iteration

s composite & recursive
textures

e accumulation textures

bi, tri & ani filtering

sgram & agp texturing

texture base addresses

texture formats

texture cache flush

illegal dispatches

over bright textures and

iteration

bump mapping

shadow mapping

e matrix multiply

dot products

LFBs

Legacy features

Real application performance
Benchmark performance

Fig. 201

U.S. Patent Aug. 17, 2004 Sheet 164 of 175 US 6,778,181 B1

20200 20300
....... X 0 1 2 3 4 5 e 7
...... XX - . X
..... XXX . X x
« XAXX . X X X
. X X X X
XXXXX
. x X X X X
AHAAXX p & X X X X xX
RRXXXXXX . X p.q x X X X X
KXXXXXXX S X X X X X X X X
Fig. 202]
9 Fig. 203
20500
20400 k\\¥
\ tmu #
RRRRRRRR 76543210
........ 7.
,,,,,,,, A6 ..o.....
........ e 5
........ D4 i
........ -
,,,,,,,, h2
GGGGGGGE xR
0 ...
Fig. 204

Fig. 205

U.S. Patent Aug. 17, 2004 Sheet 165 of 175 US 6,778,181 B1

20600 20700
tmuo tmul tmu0 tmul > tmul
T X. X
,,,,,,, X cee... X cene...X e ee .. XX
Fig. 206
g Fig. 207
20800
tmu2 tmul tmud (tmu2 # tmul) > tmuo
..................... XX e XX
..... X D ¢ D D . 9,4

U.S. Patent

-

20200
Ligat =~

f_,:wurrx‘: *Frojecbed®

20904 —_ &
(e

S

Benliree:

‘-

4
A

Aug. 17, 2004

\ g

Sheet 166 of 175

Ligit ~~

- b hﬁ“‘*

Srighs Ligh

Fig. 209

21000

N

21004—{

./".
Light Saurce

Dam Light

Lighilmg:
Map

Shadow Map 21002

—~

US 6,778,181 B1

U.S. Patent Aug. 17, 2004 Sheet 167 of 175 US 6,778,181 B1

Ligsding

#lap
; -
| Fig. 211
21200
N 21216
>,
N e - Light. 8%
Light #2 at
infinity
.,
\‘«
\'\-. _
h3B06 h30E
hIEOS hARsH
HIE14

Chae1z

Fig. 212

U.S. Patent Aug. 17, 2004 Sheet 168 of 175 US 6,778,181 B1

21300

z";’v
o
,.-/
,,L/
=3
&
. /
. g
Lizht k3838 at infnity .5‘"
™, X .
f’ : £l - " "
& 8 s
x . -)
qgé\"()
Shizderes L . £y
- map e & . . FaS
? o . ~ hIA0E30a
. L4 b
h3a0: h3H10 .
Py h3E14

L Chsmz
. h2B0G (... e
haatz @\ »
haB02— v e

Shadow

. omap —— & W
1 " h3BOBhEENE
PEIHIEID)
s) . h3k14

U.S. Patent Aug. 17, 2004 Sheet 169 of 175 US 6,778,181 B1

21400

L\\V 21402
Reflection Map S

Triangle (on edge)
eye point

Fig. 214

21500 21402

Reflection Map S

v!

Triangle (on edge)

%\/ Bump Map contains

displacements to reflection
Map coordinates

Fig. 215

U.S. Patent Aug. 17, 2004 Sheet 170 of 175 US 6,778,181 B1

21800

21802

[S

4
g
kS

LGOS s erialatend Sory alibvs aTewDe o T, whishessr is keage

Fig. 216

U.S. Patent Aug. 17, 2004 Sheet 171 of 175 US 6,778,181 B1

21700

h4202

Fig. 217

U.S. Patent Aug. 17, 2004 Sheet 172 of 175 US 6,778,181 B1

21800

21602

- e, .
i I i
'

i i :
i i 3
i :
H H
i H
e - SR S S i s, S 3| Nt S AP

Fig. 218

U.S. Patent

Aug. 17, 2004

21904

Sheet 173 of 175

lxﬁ* LOD N+1

22000

Fig. 219

Fig. 220

US 6,778,181 Bl

U.S. Patent Aug. 17, 2004 Sheet 174 of 175 US 6,778,181 B1

22100

® 4-dSidX—e ‘ ; :
8

Fig. 221

U.S. Patent

22200

State

Texture #

SST_TPERSP_ST
SST_TCUO_TOTHER_SRC
SST_TCUO_TLOCAL_SRC
SST_TCU1_TLOCAL_SRC
SST_TMINFILTER(0/1)
SST_TMAGFILTER(0/1)
SST_TLODDITHER(0/1)
SST_TLFORMAT(0/1)

SST_TC_ZERO_OTHER_0
SST_TC_ZERO_OTHER_1
SST_TC_SUB_CLOCAL_0
SST_TC_SUB_CLOCAL_1
SST_TC_MSELECT_0
SST_TC_MSELECT_1

SST_TC_REVERSE_BLEND(0/1)
SST_TC_CLAMP_F
SST_TC_CLAMP_OUT_RANGE
SST_TC_ADD_CLOCAL,
SST_TC_ADD_ALOCAL
SST_TC_INVERT_OUTPUT
SST_RECURSION_ENABLE
COMBINE UNIT BITS:
SST_RGBSELECT
SST_LOCALSELECT

SST_LOCALSELECT_OVERRIDI
E_WITHATEX

SST_CC_ZERO_OTHER
SST_CC_SUB_CLOCAL
SST_CC_MSELECT
SST_CC_REVERSE_BLEND
SST_CC_ADD_CLOCAL

Aug. 17, 2004

Bump Map

Tex 4

1

TEX1
TEX0
Feedback
Bilin/Bilin
Bilin/Bilin
0/0

Bump/Bum
p
Cother

0

Local
Local
LODFrac

CONST1
(2x2 xform
mults)

0/1
0
3
0/1

1

CtexSwizzl
e

S © O

Refl map

Tex 3

1

TEX1
TEXO
Feedback
Bilin/Bilin
Bilin/Bilin
0/0
ARGBI1555

Cother

b3

Local

]
LODFrac
0

0/0

0/1

Sheet 175 of 175

Specular
Surface

Tex 2

1

TEXI
TEX0
Feedback
Bilin/Bilin
Bilin/Bilin
0/0
ARGBI1555

Cother
Cother
Local

(]
LODFrac

Local

0/0

/1

US 6,778,181 Bl

diffuse Light

Tex 1

1

TEX1
TEX0
Feedback
Bilin/Bilin
Bilin/Bilin
0/0
ARGB1555

Cother

X

Local

0
LODFrac
0

0/0

0/1

diffuse
Surface

Tex 0

1

TEX1
TEX0
Feedback
Bilin/Bilin
Bilin/Bilin
0/0
ARGBL155

Cother
Cother
Local

0
LODFrac

Local

0/0

0/1

US 6,778,181 B1

1

GRAPHICS PROCESSING SYSTEM HAVING
A VIRTUAL TEXTURING ARRAY

RELATED APPLICATION(S)

This application claims the priority of a provisional patent
application filed Dec. 7, 2000 under Ser. No. 60/254,022,
and which is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

The present invention relates generally to the field of
image processing, and more particularly to an apparatus for
combining texel images to generate graphics images.

BACKGROUND OF THE INVENTION

Recent advances in computer performance have enabled
graphics systems to provide more realistic graphical images
using personal computers and home video game computers.
In such graphics systems, some procedure must be imple-
mented to “render” or draw graphics primitives to the screen
of the system. “Graphics primitives” are a basic component
of a graphics picture, such as a polygon, e.g., a triangle, or
a vector. All graphics pictures are formed with combinations
of these graphic primitives. Many procedures may be uti-
lized to perform graphics primitives rendering.

Conventional graphics systems perform these graphics
rendering procedures using a frame buffer. A frame buffer
generally comprises a plurality of computer memory chips
that store information concerning pixel activation on the
system’s display screen. Generally, the frame buffer includes
all of the graphics data information that will be written onto
the screen.

In the past, there have been many attempts to design
hardware implementations of the various components of the
standard graphics-processing pipeline. Such designs have
primarily focused on increasing speed, efficiency, and an
overall performance of the processing architecture.

DISCLOSURE OF THE INVENTION

A graphics processing system is provided. The graphics
processing system includes a front end module for receiving
pixel data. A setup unit is coupled to the front end module
and generates parameter coefficients. A raster unit is coupled
to the setup unit and generates stepping information. A
virtual texturing array engine textures and colors the pixel
data based on the parameter coefficients and stepping infor-
mation. Also provided is a pixel engine adapted for process-
ing the textured and colored pixel data received from the
virtual texturing array engine.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the invention and many
of the attendant advantages thereof will be readily obtained
as the same becomes better understood by reference to the
following detailed description when considered in connec-
tion with the accompanying drawings.

FIG. 1 illustrates a typical hardware configuration of a
workstation in accordance with a preferred embodiment.

FIG. 2 is a diagram of a system implementing a virtual
texturing array according to one embodiment.

FIG. 3 shows 8-bit textures that may be supported by one
embodiment of the virtual texturing array.

FIG. 4 depicts several 16-bit textures that can be sup-
ported by an embodiment of the virtual texturing array.

FIG. 5 illustrates several other textures that can be sup-
ported according to an embodiment of the virtual texturing
array.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 6 shows a method for texture sampling in a graphics
pipeline, in accordance with one embodiment.

FIG. 6A shows a method illustrating various techniques
associated with operation 610 of FIG. 6, in accordance with
one embodiment.

FIG. 7 illustrates an exemplary architecture for texture
sampling in a graphics pipeline, in accordance with one
embodiment.

FIG. 8 is a diagram of a pipeline of the virtual texturing
array (VTA) according to one embodiment.

FIG. 9 illustrates triangle dispatch diagrams.

FIG. 10 shows a dispatch mechanism for single, compos-
ite and recursive texture processing.

FIG. 11 illustrates examples of recursion equations.

FIG. 12 illustrates recursion dispatch of one layer of
recursion.

FIG. 13 illustrates recursion dispatch of two layers of
recursion.

FIG. 14 is a table depicting pixel state, its functions, and
destinations.

FIG. 15 is a table depicting triangle state, its functions,
and destinations.

FIG. 16 is a table showing Mode State per VTA.

FIGS. 17A-E together depict a table describing Mode
State per texture.

FIG. 18 is a flow diagram that describes the VTA pipeline
performance model according to an illustrative embodiment.

FIG. 19 is a diagram depicting global mode register for a
global mode state from the VTA side-band interface.

FIG. 20 illustrates a per-texture mode register for a
per-texture mode state from the VTA side-band interface.

FIG. 21 is a diagram illustrating the preferred method for
coding an arithmetic unit as well as a uniform side-band
connection scheme.

FIG. 22 shows the S and T generator according to one
embodiment.

FIG. 23 depicts an SOW, TOW, OOW Iterator, a Quad
Generator, a W Reciprocal, and a W Multiply of the S and
T generator.

FIG. 24 depicts the VTA iterator and quad generator.

FIG. 25 illustrates a unit for generating a W reciprocal.

FIG. 26 shows a multiply unit used for perspective
correction according to one embodiment.

FIG. 27 shows a portion of the same multiply unit at a
higher level of detail.

FIG. 28 is a table listing outputs to the ST Scaler.

FIG. 29 is a table listing outputs to a Log of Mipmap Side
(LMS) calculation.

FIG. 30 is a diagram that illustrates the parameters used
in the calculation of LMS for the locations of a 2x2 pixel
quad in texture space.

FIG. 31 is a diagram that illustrates the parameters used
in the calculation of Anisotropic Area for the locations of a
2x2 pixel quad in texture space.

FIG. 32 is a block diagram of the kernel walker according
to one embodiment.

FIG. 33 is a graphical representation of sampling and
neighborhoods with respect to anisotropic ratios.

FIG. 34 illustrates anisotropic kernel walking according
to one embodiment.

FIG. 35 shows a texture map inset on a drawing surface
according to one embodiment.

US 6,778,181 B1

3

FIG. 36 is a graph illustrating the organization of sa, ta
address space.

FIG. 37 is a graph showing how sa and ta indices are
extracted from raw s and t values coming from the kernel
walker.

FIG. 38 shows a texel center.
FIG. 39 is a graphical illustration of point sampling.
FIG. 40 is a graphical depiction of bilinear sampling.

FIG. 41 is a graphical depiction of a plurality of texels that
illustrates how the integer portion of sa and ta addresses
build in the positive and negative directions.

FIG. 42 is a texel map that illustrates wrapping.
FIG. 43 is a texel map that illustrates mirroring.
FIG. 44 is a texel map that illustrates clamping.
FIG. 45 illustrates clamp to black.

FIG. 46 depicts an example of a square map with an
aspect ratio of 1.

FIG. 47 shows two cases of maps with an aspect ratio of
2

FIG. 48 illustrates the packaging for 16 bbp and an
Anisotropic Ratio (AR) of 1.

FIG. 49 illustrates the packaging for 32 bbp and an AR of
1

FIG. 50 illustrates the packaging for 8 bbp and an AR of
32, 64, 128, 256, 512, 1024, 2048 where S is larger.

FIG. 51 illustrates the packaging for 32 bbp and an AR of
2 where T is larger.

FIG. 52 illustrates the packaging for 32 bbp and an AR of
8 where T is larger.

FIG. 53 illustrates the packaging for 16 bbp and an AR of
32, 64, 128, 256, 512, 1024, 2048 where T is larger.

FIG. 54 illustrates the packaging for 4 bbp and an AR of
32, 64, 128, 256, 512, 1024, 2048 where T is larger.

FIG. 55 shows the texture address module’s overall
architecture.

FIG. 56 illustrates the Raw S,T data path.

FIG. 57 shows the matching operations utilized to deter-
mine texel grouping.

FIG. 58 shows a 2x2 set of 4x4 cache entries.

FIG. 59 depicts a 3x3 set of 4x4 blocks in s,t space.

FIG. 60 depicts a final s, t data path.

FIG. 61 depicts a cache line set association according to
one embodiment.

FIG. 62 shows an address generation portion of the
pipeline for generating an address from on S,T pair.

FIG. 63 depicts tag logic of the cache.

FIG. 64 illustrates a large DXTn surface.

FIG. 65 shows a large surface for the DXT1 format with
64-bit units.

FIG. 66 illustrates a large surface in the DXT2,3,4 and 5
formats, where each 4x4 takes 128 bits.

FIG. 67 shows the memory layout within a single 256 bit
read atom in DXT1 (4 bpp) mode.

FIG. 68 shows the S,T space alignment corresponding to
mode A.

FIG. 69 shows a surface that is 8 texels wide and
arbitrarily tall.

FIG. 70 shows the S,T space alignment for mode B.

FIG. 71 shows a surface that is 4 texels wide and is used
for surfaces that are 4, 2, or 1 texel wide and arbitrarily tall.

10

15

20

25

30

35

40

45

50

55

60

65

4
FIG. 72 shows the alignment for mode C.
FIG. 73 shows a DXT2 to DX127 surface in mode D.
FIG. 74 shows the alignment of mode D in S, T space.
FIG. 75 illustrates mode E.
FIG. 76 shows the alignment of mode E in S,T space.

FIG. 77 illustrates alignment blocks and wrapst values for
Mode A.

FIG. 78 illustrates alignment blocks and wrapst values for
Mode B.

FIG. 79 illustrates alignment blocks and wrapst values for
Mode C.

FIG. 80 illustrates alignment blocks and wrapst values for
Mode C when wrapst[3:2]=10.

FIG. 81 illustrates alignment blocks and wrapst values for
Mode D.

FIG. 82 illustrates alignment blocks and wrapst values for
Mode E with a 4 wide surface, wrapst[3:2]=11.

FIG. 83 illustrates alignment blocks and wrapst values for
Mode E with a 2 wide surface in Mode E, wrapst[3:2]=10.

FIG. 84 is a block diagram of the filter unit.

FIG. 85 depicts a CSA tree.

FIG. 86 depicts a model for color substitution.

FIG. 87 is a table that shows all the combinations of color
substitution, bilinear RGB, and bilinear alpha.

FIG. 88 depicts the structure of a chroma key module.

FIG. 89 depict a model for clamping at 1.

FIG. 90 depicts a model for clamping at 0.

FIG. 91 illustrates a model for clamping according to
another embodiment.

FIG. 92 illustrates a model for clamping according to yet
another embodiment.

FIG. 93 is a detailed diagram of the multiplexer and
accumulator.

FIG. 94 shows an overview of the combine unit within the
VTA.

FIG. 95 illustrates the Texture and Color Per-Pixel Com-
bine Units.

FIG. 96 illustrates the color path (for each RGB) of the
TCU.

FIG. 97 depicts an alpha path of the TCU.

FIG. 98 shows a color path (for each RGB) of the CCU.

FIG. 99 illustrates an alpha path of the CCU.

FIG. 100 illustrates a method for texture lighting, in
accordance with one embodiment.

FIG. 101 demonstrates how more complex math functions
can be programmed using the general selectability of the
combine unit inputs, in particular, a four term dot product.

FIG. 102 demonstrates how more complex math functions
can be programmed using the general selectability of the
combine unit inputs, in particular, a three term dot product.

FIG. 103 demonstrates how more complex math functions
can be programmed using the general selectability of the
combine unit inputs, in particular, a 2x3 matrix multiply.

FIG. 104 illustrates the accumulator of the VTA.

FIG. 105 is a top-level block diagram of an iterator.

FIG. 106 depicts a triangle state FIFO.

FIG. 107 depicts an iteration state array and parameter
iterators according to one embodiment.

FIG. 108 illustrates quad neighborhood generation logic.

FIG. 109 depicts a coverage mask correction block.

US 6,778,181 B1

5

FIG. 110 diagrams the weave of LFB transaction into the
pixel pipeline of the VTA Combine Unit.

FIG. 111 is a chart that describes each of the control bits
of the LFB mode register.

FIG. 112 is a table that decodes VIDDEV_LFB__
FORMAT of the LFB Mode register.

FIG. 113 is a chart listing the control bits of the LFB
Depth Constant Register.

FIG. 114 is a table describing the functions of an LFB
Byte-Swizzle Unit.

FIG. 115 is a table describing the functions of an LFB
Word-Swap Unit.

FIG. 116 is a table describing the function of an LFB
Color-Lane Unit.

FIG. 117 is a table that details the processing for true-
color and 1fb-constants of the LFB Color Format Unit.

FIG. 118 is a table that defines equations for determining
the LFB Type sent to the PE.

FIG. 119 is a table that details the interpretation of the
coverage mask based on the state of the LFB Type bus.

FIG. 120 is a table that details the interpretation of the XY
address bus based on the state of the LFB Type bus.

FIG. 121 is a table that details interpretation of the
tdpez_ pix0, tdpe _z dx, tdpe q pix0 and tdpe q dx
buses for LFB transactions.

FIG. 122 depicts a full pixel quad created by replicating
left and right pixels in the combine unit.

FIG. 123 illustrates one of four physical address request
ports of the cache of the VTA.

FIG. 124 depicts input fields to the texture cache.

FIG.
port.

FIG.

FIG.

FIG.
mode.

FIG.
mode.

FIG.
mode.

FIG.

FIG.
mode.

FIG.
mode.

FIG.
mode.

FIG. 135 shows the mappings for tiled mode 4 bit per
texel textures.

125 depicts the data fields in the memory request

126 illustrates the field of the return data.
127 shows the data fields in the color output port.
128 illustrates a texel map in 4-bit per texel tiled

129 illustrates a texel map in 8-bit per texel tiled
130 illustrates a texel map in 8-bit per texel linear

131 depicts a texel map in 16-bit per texel mode.
132 illustrates a texel map in 16-bit per texel linear

133 illustrates a texel block for 32-bit per texel tiled

134 depicts a row of texels for 32-bit per texel linear

FIG. 136 shows the mappings for tiled mode 8 bit per
texel textures.

FIG. 137 shows the mappings for tiled mode 16 bit per
texel textures.

FIG. 138 shows the mappings for tiled mode 32 bit per
texel textures.

FIG. 139 illustrates the mappings in linear mode for 8, 16,
and 32 bpp.

FIG. 140 shows the block level organization of the color
cache and the raw cache.

FIG. 141 illustrates the concept of a unique request group
in S and T space.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 142 depicts the data fields directly entering the color
cache tag unit.

FIG. 143 shows the arrangement of the color cache tag
unit.

FIG. 144 shows the data fields within each ccts signal.

FIG. 145 shows the block level construction of a tag
module.

FIG. 146 depicts the inputs from the raw cache unit.

FIG. 147 is a table where format[4:0] indicates the format
of the data, “tformat”.

FIG. 148 illustrates fields for input from the raw cache.

FIG. 149 is a block diagram of the format conversion unit.

FIG. 150 illustrates opaque and one bit alpha transparency
blocks (DXT1) in DirectX.0:Compressed Texture Format.

FIG. 151 illustrates explicit texture transparency (Alpha
Channel) encoding (DXT?2).

FIG. 152 illustrates 3-Bit Linear Alpha Interpolation
(DXT3).

FIG. 153 depicts compressed texture format (CC__HI).

FIG. 154 depicts a memory mapping of texel 31 to texel
0.

FIG. 155 shows the Compressed Texture Format (CC__
CHROMA).

FIG. 156 depicts the Compressed Texture Format (CC__
MIXED).

FIG. 157 depicts the Compressed Texture format (CC__
ALPHA).

FIG. 158 graphically describes write address generation
for tiled storage mapping.

FIG. 159 depicts a cache tag group for tiled storage
mapping.

FIG. 160 illustrates a cache slog for tiled storage map-
ping.

FIG. 161 shows a cache tag for linear storage mapping.

FIG. 162 illustrates a cache slot for linear storage map-
ping.

FIG. 163 illustrates read address generation.

FIG. 164 illustrates the S, T Swizzle for a tiled storage
map.

FIG. 165 shows the S, T Swizzle for a linear storage map.

FIG. 166 illustrates the output fields from the format
conversion unit.

FIG. 167 shows the data fields pushed into this FIFO.

FIG. 168 illustrates the S, T calculation process from a
FIFO context when the extracted texel coordinates cross a
cache entry boundary.

FIG. 169 shows the bit fields in the color cache data store
input token.

FIG. 170 illustrates a color cache data store unit.

FIG. 171 shows a tiled space mapping of cache entry to
physical RAMS.

FIG. 172 depicts a linear space storage mapping accord-
ing to one embodiment.

FIG. 173 shows the data entering the raw cache data store
from the raw cache context FIFO.

FIG. 174 shows a color cache performance model.

FIG. 175 depicts a raw cache performance mode.

FIGS. 176 A-C is a table listing parameter data and
parameter control within a single DVS packet received from
the setup unit.

FIG. 177 illustrates behavior patterns for a one iteration
polygon with no per-iteration parameter.

US 6,778,181 B1

7

FIG. 178 illustrates behavior patterns for a one iteration
polygon with one per-iteration parameter.

FIG. 179 illustrates behavior patterns for a N iteration
polygon with N per-iteration parameters.

FIG. 180 is a table listing raster unit instructions including
per-pixel stepping-state and coverage-control.

FIGS. 181A-B together show a table listing pixel data
signals delivered to the PE.

FIGS. 182A-B show a table of address and data buses for
the CETA and CETD interfaces.

FIG. 183 illustrates a table defining input and output
signals associated with the memory controller.

FIG. 184 illustrates another table defining input and
output signals associated with the memory controller.

FIGS. 185A-B depict a table setting forth several physi-
cal characteristics of the RAMs of the VTA.

FIGS. 186A-B depict a table listing exemplary gate
counts of the VTA.

FIG. 187 is a table listing tests for testing the S and T
generator according to an embodiment.

FIG. 188 is a table listing tests for testing the log of map
size calculation unit according to an embodiment.

FIG. 189 is a table listing tests for testing the kernel
walker according to an embodiment.

FIG. 190 is a table listing tests for testing the texture
address and cache units according to an embodiment.

FIG. 191 is a table listing tests for testing the filter unit
according to an embodiment.

FIG. 192 is a table listing tests for testing the combine unit
according to an embodiment.

FIG. 193 is a table listing tests for testing the accumulator
according to an embodiment.

FIG. 194 is a table listing tests for testing the iterators
according to an embodiment.

FIG. 195 is a table listing tests for testing the sideband
according to an embodiment.

FIG. 196 is a table listing texture mapping tests.

FIG. 197 is a table listing lighting tests.

FIG. 198 is a table listing math tests.

FIGS. 199A-199E is a table listing VTA registers and
fields, specifies which modules they control, and the name of
the test that ensures the coverage.

FIGS. 200A-200F together show a VTA module level test
matrix that itemizes each of the modules of the VTA and
their interaction with software.

FIG. 201 illustrates a VTA unit level test matrix that
itemizes each of the modules of the VTA and their interac-
tion with software.

FIG. 202 shows a texture for an ani ratio test.

FIG. 203 shows the patches for 8 pixels, numbered 0 to 7,
that correspond to the texture shown in FIG. 202.

FIG. 204 shows a texture for an ani weight test.

FIG. 205 shows an 8x8 grid for every tmu.

FIG. 206 illustrates a texture resulting if the tmu does not
pop from the recursion FIFO.

FIG. 207 illustrates a grid of textures if the tmu does pop
from the recursion FIFO.

FIG. 208 depicts a resulting grid if the push and pop mask
are configured to do “(tmu2 #tmul)>tmu0”.

FIG. 209 illustrates a model for building light maps using
projected textures.

10

15

20

25

30

35

40

45

50

55

60

65

8
FIG. 210 illustrates a model for building shadows.

FIG. 211 depicts a model for determining occlusion using
shadow.

FIG. 212 shows a model for simple lightmap generation.

FIG. 213 is an illustration of a model for generating a
shadow map.

FIG. 214 is a drawing that describes how reflection
mapping works.

FIG. 215 shows a model for bump mapping.

FIG. 216 illustrates a model for mapping pixels in texture
space.

FIG. 217 shows a model for mapping pixels into texture
space for anisotropic texturing.

FIG. 218 illustrates a model for bilinear interpolations
across the line of anisotropy.

FIG. 219 depicts the distance walked along the line of
anisotropy.

FIG. 220 illustrates a model for mapping pixels into
texture space for anisotropic texturing for a 2x3 quad.

FIG. 221 illustrates a model for generating four pixels/
2clk.

FIG. 222 is a table illustrating values that can be used
when processing multiple textures per pixel.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

FIG. 1 illustrates a typical hardware configuration of a
workstation in accordance with a preferred embodiment
having a central processing unit 110, such as a
microprocessor, and a number of other units interconnected
via a system bus 112.

The workstation shown in FIG. 1 includes a Random
Access Memory (RAM) 114, Read Only Memory (ROM)
116, an I/O adapter 118 for connecting peripheral devices
such as disk storage units 120 to the bus 112, a user interface
adapter 122 for connecting a keyboard 124, a mouse 126, a
speaker 328, a microphone 132, and/or other user interface
devices such as a touch screen (not shown) to the bus 112,
communication adapter 134 for connecting the workstation
to a communication network 1173 (e.g., a data processing
network) and a display adapter 136 for connecting the bus
112 to a display device 138.

The workstation typically has resident thereon an oper-
ating system such as the Microsoft Windows NT or Win-
dows Operating System (OS), the IBM OS/2 operating
system, the MAC OS, or UNIX operating system. Those
skilled in the art may appreciate that the present invention
may also be implemented on platforms and operating sys-
tems other than those mentioned.

VTA Overview

This specification describes the micro-architecture of the
texturing unit of a video device, also generically referred to
herein as VIDDEV. The unit is named the Virtual Texturing
Array (VTA) as it provides a virtual array of eight texture
mapping units.

FIG. 2 is a diagram of a system 200 implementing the
VTA 202. The VTA processes pixels of a 2x2 quadrant as
described by inputs from the Raster and Setup Units 204,
206. Pixels are textured and colored based on mode infor-
mation from the Command Front End (CFE) 208, per-
triangle parameter coefficients from the Setup Unit, and
per-pixel stepping information from the Raster Unit.

US 6,778,181 B1

9

Concurrently, the VTA generates texture cache fetch
requests to the Memory Controller (not shown), layering up
to eight or more textures on every polygon, before delivering
pixel data (evaluated (i.e. iterated) X, Y, Z, Fog and colored/
textured ARGB) to the Pixel Engine 210.

The following section contains the basic theory of opera-
tion of the VTA.

The VTA combines texture mapping, texture combining,
color iterating, and color combining into a processing array.
It extends the concept of multiple textures per pixel by using
the same texture pipeline to handle multiple textures in
multiple clocks. The design processes four pixels of a 2x2
screen quadrant in every clock allowing up to 8 or more
layers of texture and color in as many clocks.

Table 1 sets forth several exemplary features of the VTA
system according to a preferred embodiment.

TABLE 1

Backwards compatible with legacy systems/software at the API level.
4 pixels (a 2x2 pixel quad) processed in every clock.

0 to 8 texture and color/parameter evaluations in as many clocks.
Composite texturing (data combine).

Recursive texturing (address perturbation - bump mapping).

Bilinear, trilinear, anisotropic and percentage-passed filtering.
Overbright and underbright lighting.

Integrated color and texture combine units.

Lightmap construction, including shadows and distance attenuation.
Occlusion (shadow) maps.

8-bit textures: A8, I8, Al44 & RGB-palette.

16-bit textures: RGB565, ARGB8332, ARGB1555, AR181044, AI88
& ARGB-palette.

Other textures: 4-bit texture compress, 32-bit ARGB, YUV422 &
YUV420.

Non-power of two textures (no mip-mapping, mirroring and wrapping;
clamping only).

Integrated 256x24 Palette RAM.

OpenGL texture borders.

Constant color borders.

Wrapping, mirroring and mip-mapping on non-power of two textures.
4 bilinear filtered pixels per clock (full speed).

Table 2 illustrates several illustrative performance char-
acteristics according to one embodiment.

TABLE 2

4 bilinear filtered pixels per clock.

2 trilinear filtered pixels per clock.

2 bilinear surface mapped + bilinear light mapped pixels per clock.
2 bilinear bump mapped pixels per clock.

1.33 bilinear bump mapped + bilinear light mapped pixels per clock.

The VTA preferably supports a variety of 8-bit, 16-bit and
32-bit textures in raw, compressed and palette index formats.
FIGS. 3-5 describe several such formats that can be sup-
ported. As shown, FIG. 3 shows 8-bit textures 300 that may
be supported, while FIG. 4 depicts several 16-bit textures
400 that can be supported. FIG. 5 illustrates several other
textures 500 that can be supported.

According to one embodiment, the VTA supports palette
textures through an integrated palette RAM. The palette
RAM includes a 256x24 array with one write port and four
read ports. This solution provides indexed texture perfor-
mance through 4 palette reads per clock (1 to 4 cycles per
quad) with an overhead for writing and reading the RAM.

FIG. 6 shows a method 600 for texture sampling in a
graphics pipeline, in accordance with one embodiment.
Initially, in operation 602, texture information is retrieved
using texture coordinates. Such texture coordinates may be
generated by a previous rasterizer such as Raster Unit 204 or

10

15

20

25

30

35

40

45

50

55

60

65

10

any other rasterizer-type unit in a manner that is well known
to those of ordinary skill.

As an option, the texture information may include color
information (i.e. filtered texture color information), texture
coordinates, texels, etc. In the context of the present
description, texture information may refer to any informa-
tion relating to textures, texturing, etc.

Thereafter, in operation 604, the texture information is
utilized to generate results in any well known manner. As an
option, the results may include diffuse output colors, fog
output values, specular output colors, depth output values,
texture color output values, a level of detail (LOD) value, a
Z-slope value, interpolated per-vertex data, and/or interpo-
lated vector coordinates. Of course, the results may refer to
any output capable of being produced utilizing the texture
information.

Next, it may be determined whether the current method
600 is done in decision 608. If so, the results may be
outputted in operation 612 for being processed by subse-
quent modules such as a pixel engine.

If, however, it is determined that the current method 600
is not done in decision 608, the texture information and the
results are utilized to generate additional results. Note opera-
tion 610. It should be noted that the texture information and
the results may be utilized in any desired way to generate
additional results. One exemplary method will be set forth
hereinafter in greater detail during reference to FIG. 6A. It
should be noted that operation 610 may be repeated as
desired.

FIG. 6A shows a method 620 illustrating various tech-
niques associated with operation 610 of FIG. 6, in accor-
dance with one embodiment. It should be noted that the
present techniques are illustrative in nature and should not
be construed as limiting in any manner. The texture infor-
mation and the results may be utilized in any desired way to
generate additional results.

As shown in FIG. 6A, it is first determined whether a first
technique or a second technique should be employed in
decisions 622 and 623. Such decisions may be made based
on a command and/or a signal, or in any other desired
manner.

During the first technique, the aforementioned results are
used to modify the texture coordinates. Note operation 624.
Such modification may, for example, include replacement,
multiplication and/or addition, dot products, and/or any
other mathematical function. Of course, any technique
capable of modifying the texture coordinates based on the
results may be used.

As such, additional texture information may be retrieved
in operation 626 using the modified texture coordinates.
Such additional texture information may or may not be
further processed to generate the additional results.

During the second technique, the texture information may
be used to generate additional results modified based at least
in part on the results. See operation 628. For example, partial
results may be combined from multiple texture fetches using
multiplies and/or adds, dot products, and/or any other math-
ematical function. This combination of partial results can be
outputted from the texture pipeline without retrieving more
texture data. Of course, any technique capable of modifying
the additional results based on the previous results may be
used.

As an option, results relating to neighboring pixels may be
utilized in order to generate level-of-detail (LOD) values for
use during the retrieval of the texture information.

US 6,778,181 B1

11

As such, the foregoing operations may optionally be
repeated, and the results outputted, as desired. In another
embodiment, the various operations of the foregoing
embodiment may be programmable.

FIG. 7 illustrates an exemplary architecture 700 for tex-
ture sampling in a graphics pipeline, in accordance with one
embodiment. As shown, a multiplexer 702 is provided which
is capable of feeding the texture coordinates to a texture
fetch module 704. The texture fetch module 704 is in turn
capable of retrieving the texture information in accordance
with operation 602 of FIG. 6.

Also provided is a combiner module 706 capable of
utilizing the texture information to generate results in accor-
dance with operation 604 of FIG. 6. At this point, a feedback
path may be utilized in conjunction with the multiplexer 702
to input additional texture coordinate in combination with
the results of previous operations in order to look up
additional texture information and generate further results.
See operation 610. At any point, the results may be
outputted, as mentioned earlier.

An example of an application of the aforementioned
method 600 and architecture 700 will now be set forth for
calculating a pixel color based on texture address mapping.
Initially, texture information in the form of texels is fetched.
This is accomplished by selecting a texture map, computing
an offset into the selected texture map, and determining a
texel based on the offset. Next, at least one offset is calcu-
lated. Further, the calculated offsets are used to fetch texels
from selected texture maps. Additional offsets are then
calculated to fetch texels from selected texture maps. The
texels are then combined to produce a final pixel value.

More information will now be set forth regarding another
architecture capable of carrying out the method 600 of FIG.
6. Also included in the following descriptions are texturing
implementation details that may be employed in the context
of the exemplary architecture, or any architecture for that
matter.

VTA Pipeline Description

FIG. 8 is a diagram of a pipeline 800 of the VTA
according to one embodiment. The VTA processes triangles,
defined by the Setup and Raster Units 206, 204 (sec FIG. 2),
generating a 2x2 quadrant of textured and colored pixels in
every clock. Triangles, described by the Setup Unit, are
processed, in screen space, as defined by instructions
received from the Raster Unit. Each triangle is processed in
a fashion allowing the combination of up to eight or more
filtered textures and evaluated (i.e. iterated) colors in as
many cycles. Each of the components of the VTA pipeline
will be first discussed briefly in the context of the pipeline,
with a detailed discussion of various components following.

With continued reference to FIG. 8, the Dispatch Unit 802
assembles pixel packets for composite and recursive arith-
metic processing within the VTA pipeline 800. Each pixel
packet, determined in length by the depth of the Combine
Unit 804, is processed according to pixel state received from
the Raster Unit, triangle state captured from the Setup Unit
and mode state delivered through the Side-Band 806, 808.
Dispatch packets, assembled from small polygons or
extracted from large polygons, begin processing in-order at
the top of the VTA, continue processing in-parallel within
the VTA and complete processing back in-order at the
bottom of the VTA.

The ST Generator 810 creates perspective correct S and T
addresses from iterated SOW, TOW and OOW parameters.
First, SOW, TOW and OOW are iterated for the upper left

10

15

20

30

40

45

50

55

60

65

12

pixel of the 2x2 pixel quad. Second, SOW, TOW and OOW
are derived for the neighbors of the 2x2 quad of pixels.
Third, each OOW is reciprocated and multiplied against
their respective SOWs and TOWSs to generate perspective-
correct S and T addresses.

The LOD Unit 814 generates Level-Of-Detail (LOD),
pixel area in texel space, anisotropic slope and anisotropic
ratio. The LOD and anisotropic ratio are determined from
the S and T values of the 2x2 pixel quad. This simplification
yields great hardware benefit at the expense of having only
2x2 screen space accuracy for these terms. The unit addi-
tionally generates scaled S and T addresses per the calcu-
lated LOD and programmed LOD bias.

The Kernel Walker 816 generates 2x2 neighborhoods of
S and T addresses for advanced filtering. Neighborhoods are
generated for multiple clocks to perform trilinear, anisotro-
pic and percentage passed filtering. The walker utilizes S
and T integer values to fetch the pixel neighborhood and S
and T fraction values to select filter coefficients.

The Texture Cache 820, Address Unit 818, and Data Unit
support SGRAM and AGP texturing of textures in raw and
compressed formats. At the periphery, the Address Unit
converts texture requests to physical addresses destined for
the Memory Controller and the Data Unit converts raw
texture data into true color data destined for the Texture
Cache. Raw uncompressed textures arrive in 8, 16 and 32 bit
formats and compressed texture arrive in 4 (texture) and 16
(frame) bit formats. Each format is retrieved in order and
entered into the two level texture cache pipeline. The first
cache level stores texture data in raw form (compressed,
RGB, YUYV, etc.) and the second cache level stores texture
data in true color form (32-bit RGBA).

The Filter Unit 822 performs advanced filtering on data
generated by the Kernel Walker. Data received from the
texture cache at a rate of 4 texels per 4 pixels is collected,
chroma-keyed and combined to form bilinear, trilinear,
anisotropic, or percentage pass filtered pixels. In each clock,
four filtered pixels are generated allowing the execution of
bilinear in 1 clock, trilinear in 2 clocks, and anisotropic in 4
to 16 clocks (mode/area dependent).

The Combine Unit performs all legacy texture and color
combine operations along with many extensions to allow for
lightmap generation, advanced lighting, and over-bright
lighting. Additionally, for recursive-address texturing, the
combine unit can be configured to take two color channels
and perform a rotation of parameters.

The Accumulate Unit 824 provides for the capture,
accumulation, and bypass of data coming from the Combine
Unit. Data from the combine unit may be conditionally
added to a previously captured accumulator output and the
current accumulator output may be conditionally captured
into the accumulation FIFO. As a result, sets of texture
iterations may be independently combined and accumulated
to form the equation [(T*T .. .)+(T*T ...)+ ...]

The VTA iterators generate slope accumulated parameters
for S, T, W,A,R, G, B, X, Y, Zand F. The S, T and W
iterators 826 generate data for the S and T Generator. The
alpha iterator 828 sends data to the Filter Unit as a reference
for percentage passed filtering. The R, G, B and A iterators
830 send data to the Combine Unit for use with textures.
And, the X & Y iterators 832 send coordinate information to
the Pixel Engine.

The Triangle State FIFOs 834-840 store triangle iteration
parameters received from the Setup Unit. The FIFOs provide
data to the iterators allowing simultaneous processing of
multiple triangles across multiple texture iterations. Data is

US 6,778,181 B1

13

written to the FIFO in polygon setup order and data is read
on demand by texture iteration order.

The Side-Band 806, 808 declivers mode state to the
pipeline. This state comprises all state which is not modified
on a per pixel or per triangle basis. State is maintained
through upper VTA and lower VTA side-band interfaces.
The upper interface supports the address half of the VTA and
the lower interface supports the data half of the VTA. Both
interfaces operate identically, utilizing double buffered
“active” and “shadow” registers. In addition, the side-band
provides for LFB rendering data receiving data directly off
of the side-band with state coherency managed at the CFE
of the 3D pipeline.

As mentioned earlier, the output of the Texture Combine
unit can be fed back into the pipeline to affect the address or
data of another texture iteration. The recursive feedback path
allows for the perturbation of S, T and LOD values and the
composite feedback path allows for the combination of
texture data values. More information on such texture itera-
tion will now be set forth.

Dispatcher (DIS) 802 (see FIG. 8)

The dispatcher controls the processing of triangles and
pixel quads within the VTA. Triangle parameters, received
from the Setup Unit, are captured into Triangle State FIFOs
and processed in 2x2 pixel quads defined by instructions
from the Raster Unit. Polygons begin processing in-order at
the top of the VTA, commence iterative processing within
the VTA and complete processing in-order at the base of the
VTA.

The dispatcher gathers pixel quads into “packets” and
“bundles”. Packets assemble pixel quads from polygons of
equivalent texture iteration sequence while bundles
assemble packets of equivalent pixels dispatched across
descending texture iterations. This dispatch arrangement
provides for simple composite feedback alignment at the
Combine Unit and convenient recursion feedback schedul-
ing at the Recursion FIFO.

FIG. 9 illustrates triangle dispatch diagrams 900, 902.
Dispatch packets assemble pixel quads from small and large
polygons to a depth defined by the length of the composite
feedback loop. As shown, large polygons consisting of more
quads than the packet size are processed in chunks and small
polygons consisting of fewer quads than the packet size are
processed in combination. Similarly, dispatch bundles
assemble dispatch packets processed across active texture
iterations.

The VTA dispatch theory utilizes a “scheduled packet
release” mechanism to satisfy composite and recursive tex-
turing. The scheduled mechanism satisfies composite texture
feedback through dispatch packets sized to force alignment
at the Combine Unit. Similarly, the scheduled mechanism
also satisfies recursive texture feedback through a balanced
recursion release and feedback rate.

Dispatch packets and bundles support composite and
recursive texturing through simplistic consistency. Each
packet dispatches with a consistent length to guarantee a
proper feedback-alignment for composite texturing and each
bundle dispatches with a consistent length to guarantee to
create an agreeable throughput rate for recursive texturing.

Packets and bundles group pixel quads of equivalent
texture sequence (the number and recursion order of active
textures). Unfilled packets, resulting from differing texture
sequence state, complete with “void” quads to assure a
consistent packet length. Similarly, unfilled bundles, result-
ing from texture iterations waiting for recursion, dispatch

10

15

20

25

30

35

40

45

50

55

60

65

14

with “void” packets to assure a consistent bundle length. In
either case, void quads or packets act as placeholders within
the pipeline. Voids modify nothing while only consuming
space to achieve the desired dispatch schedule.

Single, composite and recursive texture processing can
utilize the dispatch mechanisms 1000 1002, 1004 depicted
in FIG. 10 and described in the text below.

Single texture processing requires no dispatch complex-
ity. The dispatcher simply submits pixels in consecutive
raster order for processing on texture iteration zero.

Composite texture processing can utilize a dispatch that
aligns feedback between texture iterations at the Combine
Unit. The dispatcher achieves this alignment through a
dispatch of consecutive pixel packets in descending texture
iteration order. This dispatch schedule combined with
bubble collapsing and stalling at the Combine Unit assures
a proper alignment for composite texturing.

All arithmetic functions of the Combine Unit and Accu-
mulator may be applied to composite texture iterations. The
arithmetic options include two passes of combine arithmetic
((0-s) m+a) and an optional accumulation (i+j). For conve-
nience of expression, the arithmetic option of composite
texturing is indicated though the “#” symbol.

Composite Texturing: # T[n}# T[n-1] . . .

Accumulation is a subset of the composite texturing
function. Unlike features of the Combine Unit, allowing
only arithmetic options between adjacent texture iterations,
the accumulation option allows arithmetic action with any
previous texture iteration output. However, arithmetic action
is limited to a single level of composite capture and accu-
mulation between textures on the same recursion layer. For
convenience of expression, the arithmetic option of com-
posite accumulation is indicated though the “+” symbol.

Composite Accumulation: # T[n]# T[n-1] . . .)+(# T[n-m]#
To-m-1]. ..)+

Recursive texture processing can utilize a dispatch to
support texture circulation across the length of the VTA. The
dispatcher satisfies this requirement through a scheduled
dispatch enabling simultaneous processing of packets at
varying levels of recursion. As a result, the recursive dis-
patch bundle combines texture iterations from new packets
for higher iterations and old packets for lower iterations
(below the first level of recursion).

Recursive dispatch bundles texture iteration packets to
completion with absolute regularity. Bundles are released
from the highest to the lowest texture iteration with packets
marked valid when available for dispatch and void when
unavailable for dispatch. This dispatch method provides
efficient packet processing while guaranteeing a matched
dispatch recursion release and acceptance rate (preferred, as
it avoids recursion FIFO overflow).

Recursive texturing is achieved through the designation of
“push” and “pop” texture iterations. Push textures load data
onto the recursion FIFO from the Accumulator and pop
textures unload data from the recursion FIFO to the S and T
Generator. Data pushed to the recursion FIFO collects to
complete a packet before combining with the addresses of
the pop texture packet in the next dispatch bundle.

The push/pop dispatch structure of recursive texturing
provides for both serial and parallel recursion. Multiple
pushes followed by multiple pops produce parallel recursion
and multiple pushes interlaced with multiple pops results in
serial recursion. For convenience of expression, the arith

US 6,778,181 B1

15

metic option of recursive texturing is indicated though the
“>” symbol.

Recursive Texturing: T[n]>T[n-1]

The push/pop structure of the recursion dispatch allows
both serial and parallel recursion effects. FIG. 11 illustrates
examples of recursion equations 1100 with texture iterations
numbered and push/pop states defined for parallel and serial
recursive texturing.

Recursive texturing can be performed utilizing multiple
passes through the pipeline which results in a dispatch-
inefficiency between recursion layers. To begin the layer,
void packets fill pop dependent textures until recursion
feedback occurs and, to end the layer, void packets fill
completed push textures until recursion feedback completes.
FIG. 12 illustrates recursion dispatch 1200 of one layer of
recursion. FIG. 13 illustrates recursion dispatch 1300 of two
layers of recursion.

Single texture dispatch performs at the peak rate of the
VTA. Incoming polygons are dispatched as a continuous
stream of quads requesting textures defined by texture
iteration zero. The performance of this mode is limited to the
efficiency of the texture cache and the throughput of external
units.

Composite texture dispatch performs at a rate of one
texture iteration per clock. Incoming polygons are dis-
patched in sets of sequential packets requesting textures in
descending texture iteration order. The performance of this
mode is limited to the texture iteration rate coupled with
overhead from changes in composite layering state. Changes
in layering state force a dispatch of void quads to fill the last
packet of a closed-out texture sequence. This dispatch
shortcoming results in a dispatch overhead equaling the
number of void clocks to fill the last packet times the number
of texture iterations of the composite sequence (16
clocks*2-8 iterations).

Recursive texture dispatch performs at a rate of one
texture iteration per clock. Similar to composite texturing,
the recursive dispatch releases sets of sequential packets
requesting textures in descending texture iteration order. The
performance of this mode is limited to the texture iteration
rate coupled with overhead from changes in recursive lay-
ering state. Changes in layering state force void packet
dispatches at the beginning and ending of feedback for each
layer of recursion. This dispatch shortcoming results in a
dispatch overhead equaling a full VTA pipeline worth of
void packet dispatches (50 to 250 clocks) for each recursion
layer.

Both composite and recursive dispatch mechanisms raise
performance concerns over how texture iteration changes
could thrash the texture cache thrash and break memory
pages. Changes in texture access every packet may impact
the memory system, however, the reduced fill rates require
less frame buffer bandwidth.

Table 3 sets forth several dispatch rules that can be used
to optimize processing.

TABLE 3

1. Dispatch pixels from triangles in the order that they are received from
the Setup Unit.

. Dispatch pixels from triangles of the same texture iteration sequence.

3. Dispatch void pixels to fill packets between triangles of differing
texture sequence.

. Dispatch packets in descending texture iteration order to fill a bundle.

. Dispatch void packets to fill bundles waiting for recursive data
feedback.

[

LS

10

15

20

25

30

35

40

45

50

55

60

65

16

Table 4 illustrates several program rules according to a
preferred embodiment.

TABLE 4

1. Number texture iterations in linear order from iteration zero.

2. Set the composite state for combine options between texture N and
N+ 1.

3. Set the composite state for accumulate options between texture N and
textures greater than N.

4. Set the number of recursion texture pushes and pops to be equal.

5. Push recursive textures before they are popped with a limit of 4 each.

The VTA controls pixel processing through a state dis-
tributed within the VTA. This state includes pixel state
received from the Raster Unit, triangle state received from
the Setup Unit and mode state received from the Side-Band.

FIG. 14 is a table 1400 depicting pixel state 1402, its
functions 1404, and destinations 1406. Pixel state,
assembled at the Dispatch Unit, travels alongside pixels
throughout the VTA. This state supports the iteration of
pixels across multiple VTA iterations. The state bits include
state received from the Raster Unit describing pixel move-
ments and state generated by the VTA to manage texture
iteration.

FIG. 15 is a table 1500 depicting triangle state 1502, its
functions 1504, and destinations 1506. Triangle state, col-
lected from the Setup Unit into the Triangle State FIFOs,
describes the start and slope values of parameters iterated
within the VTA. This state provides the basis for per pixel
calculations of polygons and their texture iterations. The
triangle state includes start values for X and Y, and startX,
startY, deltaX and deltaY values for the sloped parameters
W, Z,R,G, B, A, S, T, and Q) of each VTA iteration.

Mode State is sampled off of the Side-Band to control
polygon and pixel processing throughout the VTA. This
state includes general VTA register state stored in flops and
per texture iteration state stored in RAMs. Each register is
sampled at it highest usage point in the pipeline and in some
cases fields of the register are transported to lower points in
the pipeline.

FIG. 16 is a table 1600 showing Mode State per VTA.
FIGS. 17A-E together depict a table a2400 showing Mode
State per texture. FIGS. 16 and a24 itemize the register-field
usage of global and per-texture-iteration mode state within
the VTA. Units marked by “*” use a register field and units
marked with “>” transport a register field.

Performance of the VTA can be described by a math
ignorant model which describes the pipeline by dispatch,
latency, throughput, stalls, bubble generation, bubble reduc-
tion and FIFOs. Table 5 provides a performance overview of
the VTA pipeline.

TABLE 5

Triangle setup data is received from the Setup Unit into Triangle State
FIFOs.

Pixel state is received from the Raster Unit.

Mode state is received off of the Side-Band.

Polygons are processed by descending texture iteration number.

Pixels are dispatched in per texture iteration packets defined by the
length of the Combine Unit.

Packets dissect pixels from large triangles and group pixels from small
triangles.

Composite packets are dispatched one after another.

Recursive packets are dispatched in two passes.

Void pixels are dispatched to fill packets between dispatch sequence
state changes.

Void packets are dispatched to provide space within pipe for the
second pass recursive data.

US 6,778,181 B1

17

TABLE 5-continued

Pixel State travels along side pixel quads to support parameter and
texture iteration.

Parameter iterators read triangle state off of the Triangle state FIFO as
pixels packets are processed.

Parameter iterators manipulate per texture iteration state for all active
polygons within the pipe.

S and T addresses are calculated for a 2x2 pixel quad.

LOD is calculated from 2x2 pixel quad.

Kernel Walker logic expands the dispatch for advanced filtering.
Trilinear and Anisotropic filtering expand the dispatch magnitude by
2, 4 & 2-16, respectively.

Texture Cache space provides data from the Memory Controller in two
levels.

Texture Cache level one stores raw memory data to support multiple
textures and filtering modes.

Texture Cache level two stores real color texels to support full-speed
2x2 quad pixel bilinear filtering.

Filter Unit logic compresses the dispatch of the Kernel Walker through
bilinear accumulation.

Combine Unit logic computes data from texture, color and composite
iterations.

Accumulator Unit logic sets aside data and accumulate composite
outputs.

Recursion path logic allows ST perturbation of subsequent texturing,
and palette emulation).

FIG. 18 is a flow diagram that describes the VTA pipeline
performance model 1800 according to an illustrative
embodiment. Each major block of the pipeline defines it
latency throughput along with an indication of where in the
pipe stalls generate, bubbles form, bubbles collapse, and
data is FIFOed.

Side-band Register Interface

Mode State is managed through “shadow” and “active”
state captured off of the side-band. The double buffered
solution allows software to set a shadow state as polygons
are processed for an active state. Software updates the
shadow state through writes down the side-band as hardware
manages the transfer of shadow state to active state through
controls from the arithmetic pipeline.

The VTA manages Side-band mode state through global
registers and per-texture iteration registers. FIG. 19 is a
diagram depicting global mode register 1900 for a global
mode state from the VTA side-band interface. As shown, the
global mode register utilizes a double-buffered flip-flop-
based design. A dcd operation 1902 enables a load of the
shadow register. The shadow state is loaded by writes down
from the side band. The active state is updated by newstate
from the pixel state pipeline. Flip-flops 1904, 1906, 1908
stall in lock-step. Software writes shadow registers as hard-
ware uses the active registers.

FIG. 20 illustrates a per-texture mode register 2000 for a
per-texture mode state from the VTA side-band interface.
The per-texture mode register utilizes a double buffered
16-entry RAM-based design. Dcd operation 12002 enables
a load of the shadow ab-state to the inverse of the active
ab-state for the decoded texture iteration. Decd operation 2
2004 generates a write to the register RAM 2005 from the
active ab-state and the decoded texture iteration. Dcd opera-
tion 3 2006 enable a load of the active ab-state from the
shadow ab-state for a higher numbered texture iterations.
Dcd operation 4: 2008 generates a read to the register RAM
from the active ab-state and the decoded texture iteration.

With continued reference to FIG. 20, the per texture
shadow and active state is interpreted from per texture
shadow and active RAM A/B selects. RAM A/B selects
determine the LSB of the RAM for active-register reads and

10

15

20

25

30

35

40

45

50

55

60

65

18

shadow-register writes. Writes to shadow registers load the
inverse of the active A/B state to the shadow A/B state. The
register updates pend when the A/B state of the shadow
register is set to the inverse of the active register. New state
updates from the pixel pipe enable an update of the active
A/B selects for all higher numbered textures. Flip-flops
2010-2022 stall in lock-step. The RAM address switches to
stalled address while stall is active. Again, software writes
shadow registers as hardware uses the active registers.

Software updates to the registers of the side-band are
coordinated through the CFE. To set a new mode state, the
CFE writes registers on the side-band, drops a “newstate”
token down the pixel-pipe and waits for a “rcvstate” token
to return from the data-path. Correspondingly, to receive a
new mode state, the data path transfers shadow state to
active state as the new state token progresses through the
pipeline.

The VTA pipeline generates four pixels per clock from
modules assembled from per-pixel math pipelines, per-quad
state pipelines and a variety of side-band connections. To aid
in design speed and accuracy, a modular design philosophy
has been adopted. FIG. 21 is a diagram 2100 illustrating the
preferred method for coding an arithmetic unit as well as a
uniform side-band connection scheme. Following the coding
scheme, the upstream modules 2102 send a two-cycle early
“newstate” and “itrnum” to the down stream module 2104.
Upstream modules 2102 stall their last two pipe stages with
a lockstep stall. Downstream modules 2104 receive early
quad-state signals to sample side-band state at the top of the
module. Downstream modules 2104 pipe side-state within
their pixel-state pipelines for side-state usage within the
module.

S and T Generator (STG) 810 (see FIG. 8)

FIG. 22 shows the S and T generator 2200 according to
one embodiment. A portion of the ST generator 2300, is
illustrated in FIG. 23, includes an SOW, TOW, OOW
Iterator 2302, a Quad Generator 2304, a W Reciprocal 2306,
and a W Multiply 2308. FIG. 23 shows the SOW and TOW
iterators maintained at the same time as the OOW. They may
be moved to a later point, just before the end of OOW
reciprocal.

FIG. 24 depicts the VTA iterator and quad generator 2400.
The SOW, TOW, OOW Iterators are based on the Generic
VTA iterator described in the following paragraphs. The
STW parameter iteration units of the VTA are 51 bits,
expressed as 8.43 integer fraction with respect to 0.0 to 1.0
spanning one texture repetition.

The Generic VTA iterator takes Texture tags from two
consecutive pipe stages, and allows for the iteration of up to
8 or more sets of components.

FIG. 25 illustrates a unit 2500 for generating a W recip-
rocal. A reciprocal can be calculated by looking up an initial
value as a function of the MSBs of the input, and subtracting
an offset equal to a second lookup value times the LSBs of
the input.

As an alternative, the 1/w can use two 512x20 ROMs, and
generates the slope by taking the difference between neigh-
boring values.

FIG. 26 shows a multiply unit 2600 according to one
embodiment. S and T fraction of % is the texel center. The
integer output includes 11 integer bits to enable 2 Kx2 K
textures. FIG. 27 shows a multiply unit 2700 according to
another embodiment.

FIG. 28 is a table 2800 listing outputs to the ST Scaler.
FIG. 29 is a table 2900 listing outputs to LMS calculation.

US 6,778,181 B1

19
Log of Map Size Calculation (LMS) of the Lod
Unit 814 (sce FIG. 8)

The LMS portion of the LOD Unit uses the S and T values
for four pixels of the 2x2 quad to generate the LMS,
Anisotropic Area (the area of the 2x2 quad in texture space),
Anisotropic Ratio, and Anisotropic slope for each pixel. The
same LMS and Anisotropic Ratio can be used for all four
pixels. If this is the case, the projection of the 2x2 pixel area
into texture space is assumed to be a scaled-up version of the
projection of each of the four pixels. While not pixel
accurate, this simplification prevents the need to pipeline
four separate LMS calculations per clock.

Coordinates of the thin dimension of rectangular textures
are not stretched to 1.0 so that the pitch of texels is
appropriate for LMS calculation.

LOD and LMS are related as: (LMS)=8-(LOD)

FIGS. 30 and 31 are diagrams 3000, 3100 that illustrate
the parameters used in the calculation of LMS and Aniso-
tropic Area for the locations of a 2x2 pixel quad in texture
space.

The Anisotropic Area is the area in texel space covered by
the 2x2 pixel quad. This is the area of the parallelogram
ABCD, or twice the area of triangle ABC. The formula for
triangle area preferably computes twice the triangle area.
The equation used is:

AniArea=dSdX*dTdY-dSdY*dTdX.

Because the area of a triangle is (base*height)/2,
dSdX*dTdY gives twice the area of triangle AEC. Similarly,
dSdY*dTdX gives twice the area of triangle ABF. Also,
triangle BEF can be shown to have the same area as triangle
BEC using BE as the base and EF as the height. So
dSdY*dTdX represents the area of ABC not covered by
AEC. In FIGS. 30 and 31, dTdX and dTdY have opposite
signs, so the total area is a subtraction instead of a sum.

An alternate way to calculate the area of ABC is to sum
the areas of the three triangles inside it, which shifts the
reduction from geometric to algebraic:

AniArea = 2* (area of ABC) = 2*(area of AEB) +

2* (area of ACE) + 2* (area of BCE) =

dSdX* (-dTdX) + dSdX*dTdY + (dSdY - dSdX) * (-
dTdX) =

-dXdX*dTdX + dSdX*dTdY - dSdY*dTdX +
dSdX*dTdX =

dSdX*dTdY - dSdY*dTdX

To derive an Anisotropic Ratio (AR), the parallelogram is
approximated as a rectangle of equal area, which has an
Anilength equal to the long edge of the parallelogram and
an AniWidth equal to the distance between the long edges of
the parallelogram. This is accomplished by calculating the
square of the length of each side of the parallelogram. The
larger value indicates the longer side of the rectangle
(AniLengthSquared=max(dTexdXSquared,
dTexdYSquared)).

The AniWidth is computed by dividing AniArea by the
Anilength, and the LMS is computed by taking the negative
of the log of the AniWidth. Several types of clamping can be
used to increase the AniWidth, as described in the equations
below. Where L and W are the Anilength and AniWidth of
the rectangle (in terms of texture wraps), AniRatio=L/W. A
range of anisotropic ratios between one and sixteen or more
can be supported. The Anisotropic ratio is clamped to a

10

15

20

25

30

35

40

45

50

55

60

65

20

user-definable maximum value to limit the number of steps
the kernel walker makes to perform proper filtering.

Anisotropic steps is the number of iterations the kernel
walker performs to walk the anisotropic kernel. This is
preferably set to be the smallest even number greater than
the anisotropic ratio. The number is computed by adding a
number as close to 2 as the fractional precision allows and
then clearing the integer bit of the result to zero. The delta
terms dSAC and dTdC represent the offset in ST space that
needs to occur for each step walking the kernel. If the
anisotropic ratio is greater than 2, the kernels do not overlap,
so the full delta term can simply be divided by the number
of steps.

For ratios between one and two, two Kkernels overlap. If
sample points are taken from the middle of each kernel, the
separation is the fractional part of the anisotropic ratio. This
can be computed from the full delta term by multiplying by
(AR-1)/AR.

Inputs:

//Syx, Tyx:
S00, S01,
$10, S11,
T00, TO1,
132, 133,
VIDDEV_TA_LMS_ BIAS,
VIDDEV_TA_LMS_ DITHER,
VIDDEV_TA_OLD_ TRILINEAR,
VIDDEV_TA__MAX_ANI_RATIO,
VIDDEV_TA_ DETAIL_MAX,
VIDDEV_TA_DETAIL_ BIAS,
VIDDEV_TA_DETAIL_SCALE,
VIDDEV_TA_POST_PERTURB_LMS,
from post perturb S’s and T’s, O: pre-perturb
VIDDEV_TA_UNIT_ANI_STEP_ SIZE,
0: width ani step size
VIDDEV_TA__ANI_RSCALE_LOG2,
this factor
VIDDEV_TA_TEX_ AREA_SCALE_10OG2,
area by this factor to get a TCU factor

// distance in texture space to neighboring pixels in the 2x2 quad,

// to obtain 4 vectors that define the sides of the quad
DS0100 = S01 - S00;
DS1110 = S11 - S10;
DS1000 = S10 - S00;
DS1101 = S11 - S01;
DT0100 = T01 - TOO;
149310 = 133 - 132;
149200 = 132 - T00;
149301 = 133 - T01;

// average screenspace horizontal and vertical differences to obtain
/I 2 vectors which define the parallelogram, dTEXdX and dTEXdY
dSdX = ((DS0100) + (DS1110))/2; // S component of dTEXdX

vector
dTdX = ((DT0100) + (149310))/2; // T component of dTEXdX
vector
dSdY = ((DS1000) + (DS1101))/2; // S component of dTEXdY
vector
dTdY = ((149200) + (149301))/2; // T component of dTEXdY
vector
// Types of clamping that happen:
// 1) AniArea clamp to min
// 2) AniLength clamp to min
// 3) AniWidth clamp to min
// 4) AniRatio clamp, which effectively widens the AniWidth
// 5) LMS clamp to LMS__max, which effectively widens the AniWidth
// 6) LMS clamp to LMS__min
// 7) AniLength clamp to AniWidth
/I After any of these occur, the original AniArea is invalid.
log2_ AniArea = log2(max(abs(dSdX*dTdY -
dSAY*dTdX), (2 (-64)) 2))/ log2(L * W_orig)
tex_ area = min(Ox1.FF, fit2int(2 (log2_ AniArea +
log2(VIDDEV_TA_TEX_AREA_SCALE_LOG2))));
// Clamping length distance 2 to (2" (~64))"2 clamps length and
LMS to 64.

/f 1: calculate LMS
//1:unit ani step size,
//expand width by

//multiply

US 6,778,181 B1

21

-continued

22

-continued

// This clamp reduces the calculated width, but this is ok because
// there’s a min. applied to width later
dTexdXSquared = | segment AB |2 = max((dSdX 2 +
dTdX"2), 2" (-64))"2);
dTexdYSquared = | segment AC |"2 = max((dSdY 2 +
dTdY"2), (2" (-64))"2;
// pick the major axis of anisotropy
if (dTexdXSquared > dTexdYSquared) {
AnilengthSquared = dTexdXSquared;
dSdMajor = dSdX;
dTdMajor = dTdX;
}else {
AnilengthSquared = dTexdYSquared;
dSdMajor = dSdY;
dTdMajor = dTdY;

}
// bias,dither LMS
// This is applied to both dimensions of the patch
if ({VIDDEV_TA_LMS_DITHER) {
LMS_ dither_ bias = 0;
}else {
case ({0, x[0) {
//these are negative to be compatible
with LOD, they’re checked VIDDEV against verilog
00: LMS__dither bias = 0/4;
01: LMS__ dither bias = 2/4;
10: LMS_ _dither bias = 3/4;
11: LMS_ dither bias = 1/4;

}

log2__Anilength_pre_ bias =
log2(AniLengthSquared)/2;
log2_ AniWidth pre_ bias = max((log2__AniArea —
log2_ Anilength pre_ bias), -64.0);
// (8.0 - Ims_b) is input to this block instead of LOD
// Is a function of the pre-bias length.
detail_factor = min(VIDDEV_TA_ DETAIL,_MAX,
(VIDDEV_TA_ DETAIL_BIAS - 8.0 -
log2_ anilength_pre_ bias) <<
VIDDEV_TA_DETAIL_ SCALE);
log2__Anilength = log2__Anilength_pre_ bias —
(VIDDEV_TA_LMS_ BIAS + LMS_ dither_ bias);
log2__AniWidth = log2__AniWidth__pre_ bias —
(VIDDEV_TA_LMS_ BIAS + LMS_ dither_ bias);

// ani ratio scale increases width, but not more than the length, so that

// LMS is not biased
log2_ AniWidth = min((log2_ AniWidth +
VIDDEV_TA_ANI_RSCALE_LOG2), log2_AniLength);
// AniWidth may be near zero, even when Anilength is large,
// in which case AniRatio clamping expands AniWidth to a
// larger value. One case where the original AniWidth is zero is
// where each pair of endpoints of the quad are identical,
// which may be common in near-edge-on surfaces.
// When the AniWidth is expanded by maxAniRatio clamping,
// the AniWidth (and thus LMS) effectively becomes a function
// of the AniLength. This is always true for bilinear.
if (VIDDEV_TA_MAX_ANI_ RATIO==0)
log2__maxAniRatio = 0; // AR=1, bilinear
else
log2__maxAniRatio =
log2(VIDDEV_TA_ MAX_ ANI_ RATIO*2);
log2_min_ar_ AniWidth = log2__Anilength -
log2__maxAniRatio; / W_min = L./ AR min, range
down to -68.0
log2_ AniWidth_ arclamped =
max(log2_min_ar_ AniWidth, log2_ AniWidth);
// Calculate the full-range LMS from this width, which can span
// approx. +/-64.0 This indicates the map size at which 1 pixel
width >= 1 texel width LMS_ biased__dithered = —
// log2_AniWidth__arclamped; old trilinear, clamp LMS
if ((w__is_negative for any of the 4 pixels) ||
(LMS_ biased_dithered » VIDDEV_TA_LMS_MAX)) {
LMS__clamped = VIDDEV_TA_IMS_MAX; //
largest map
filter = VIDDEV_TA_MAGFILTER;
telse if (LMS_ biased_ dithered =<
VIDDEV_TA_LMS_MIN)){
LMS_ _clamped = VIDDEV_TA_LMS_MIN; //
smallest map

10

15

20

25

30

35

40

45

50

55

60

65

filter = VIDDEV__TA_ MINFILTER;
}else {

LMS_ clamped = LMS_ biased__dithered;

filter = VIDDEV__TA_ MINFILTER;

// LMS_frac_inv = (1.0 - LMS_ frac) & Oxff and is equal
// to old lod_ frac, which was range [0, Oxff]
if (VIDDEV_TA_LMS_ZERO_FRAC) {
ILMS_ frac_inv = 0x00;
}else {
LMS_ frac_inv = (0x100 - (LMS_ clamped &
0xff)) & 0xff;

LMS_int = (LMS_clamped + 0xff) >> 8; //
ceiling to get integer LMS
if (VIDDEV_TA_ OLD_TRILINEAR) &&
(VIDDEV_TA_IMS_ODD" (LMS_int & 1))) {
// 1sb of LMS isn’t same as LMS_ odd, so
change the integer of LMS to other near integer
LMS
if (LMS_int == 0) {
IMS_int=1;
}else {
LMS_ int--;

}

// expand the width for LMS__max clamping
log2__AniWidth_ Imsclamped =
max(log2_ AniWidth_arclamped, ~-LMS__clamped);

/1 if width exceeded length from min clamping, make them equal
log2_ Anilength_Imsclamped = max(log2_ Anil.ength,
log2_ AniWidth Imsclamped);
log2__AniRatio_Imsclamped =
log2_ Anilength_Imsclamped —
log2__AniWidth_Imsclamped // AR=L/W
AniRatio_ 4int 10frac =
round(float2int(2 " log2_ AniRatio_ Imsclamped));

// round is to 10-bit fraction
if ((AniRatio_ 4int_ 10frac == 1.0)
|| w_is__negative for any of the 4
pixels)
|| (lms was clamped to min &&
VIDDEV_TA__ANI_MIN_FORCE__AR1)) {
// minified, so do bilinear
// AR == 1.0, one bilinear kernel
// this case may not need to be separate from the next one, but it
makes diags easier
AniSteps = 1;
dsdcC = 0.0;
dTdC = 0.0;
AniRatio_4int_ 10frac = 1.0;
} else if(AniRatio__4int_10frac <= 2.0) {
// AR = (1.0, 2.0]
// as AniRatio approaches 1.0 (log2_ AniRatio_ Imsclamped ==

0.0) the steps become 0.0
AniSteps = 2;
if(VIDDEV_TA_UNIT__ANI_STEP_ SIZE) {

//*** this may need more than 4frac bits of AR??
// a table in HW:
log2(AniRatio_ 4int_ 10frac -1)
dSdC = dSdMajor * 2A(—10g27AniLength7prebias -
LMS_int
+log2(AniRatio_ 4int_ 10frac -1));
dTdC = dTdMajor * 2A(—10g27AniLength7prebias -
LMS_int
+log2(AniRatio__4int_ 10frac - 1));
}else {
dSdC = dSdMajor * 2A(—10g27AniLength7prebias +
log2__AniWidth_ Imsclamped
+log2(AniRatio__4int_ 10frac - 1));
dTdC = dTdMajor * 2A(—10g27AniLength7prebias +
log2_ AniWidth_ Imsclamped
+log2(AniRatio__4int_ 10frac - 1));

}else {

// AR = (2.0, 16.0)

// anisteps is ceiling to next even number, for example AR of (2.0,
4.0] maps to 4 steps

AniSteps = ((AniRatio_ 4int_ 10frac + 0x7FF)

US 6,778,181 B1

23

-continued

>> 10) & Ox1E;
/f for 4.10 int.frac AniRatio
// Original dS,TdMajor are based on the original Anilength.
if (VIDDEV_TA__UNIT__ANIL_STEP_SIZE) {
// “old” - do unit magnitude step size
// length_ vector/((W*L))*W = length_ vector/L
// Walking one kernel width per step
// was: dSAC = (dSdMajor/AniArea)*width
// was: dTdC = (dTdMajor/AniArea)*width
// divide vector L by its own magnitude
dSdC = dSdMajor * 2"(-
log2_ Anilength_prebias — LMS_ int);
dTdC = dTdMajor * 2"(-
log2_ Anilength_prebias — LMS_ int);
}else {
// “new” - do (|[L|/AR) step size
// Each step is the distance (magnitude) of the width of the
// final clamped rectangle, but in the
// direction of the original length vector. So, step__vector =
// length__vector/AR__scalar.
// These distances are in 1x1 texture space (1.0 is one
// wrap).
dSdC = dsdMajor * 2(-
log2__Anilength_ prebias +
log2_ AniWidth Imsclamped);
dTdC = dTdMajor * 2"(-
log2__Anilength_ prebias +
log2_ AniWidth Imsclamped);

}
// this ceiling makes sure that 1.0+11sb in 4i10f does not map
// to 1.0 in the 4i4f and the value matches aniSteps
aniratio_ 4int_ 4frac = (aniratio_ 4int_ 10frac +
0x3f) >> 6;
if (aniratio_ 4int_ 4frac > OXFF) {
/I clamp
aniratio_ 4int_ 4frac = OxFF;

}
case (VIDDEV_LOD_2_TCU_SEL) {

// produces a 9-bit value

00: LMS_2_ tcu_ frac =
{(VIDDEV_TA_OLD_TRILINEAR && LMS_int[0]),
LMS_ frac_inv};

01: LMS_2_ tcu_ frac =
{(VIDDEV_TA_OLD_TRILINEAR && LMS_ int[0]),
detail_ factor};

10: LMS_2_teu_ frac = tex_ area;
[0, 1.FF]

// 11:reserved;

// range

Outputs:
LMS_int //4bits
AniRatio_ 4int_ 4frac //
AniSteps //4bits
dSdC, dTdC // in 0.0-1.0 texture space: 1sign.lint.19frac
LMS_2_tcu_ frac //
new trilinear frac_ 1in130frac
S, S_ov, T, T_ov // from STG with biases added in parallel
with LMS cale.

Kernel Walker (KER) 816 (see FIG. 8)

The kernel walker is responsible for taking in the S and T
addresses and anisotropic parameters computed upstream
and generating the appropriate address requests to the tex-
ture cache, enabling the proper subsequent texture filtering
for each pixel. There are 4 separate kernel walkers, one for
each pixel in the quad. Every clock, each kernel walker is
capable of generating a 2x2 texel kernel for its incoming
pixel, based on the center S and T values sent down from the
LMS block. This 2x2 texel kernel is the baseline used for
point sampling, bilinear filtering, and small percentage-
passed filtering. For advanced filtering modes, such as
anisotropic or trilinear, the kernel walker generates a
sequence of 2x2 kernels to comprise the complete kernel
used for fetching all the data that is utilized for the advanced

10

15

20

25

30

35

40

45

50

55

60

65

24

filtering mode. As it iterates on the kernel, the kernel walker
will stall the LMS unit.

The kernel walker has two primary modes of operation,
allowing either bilinear or anisotropic texture filtering. In
bilinear mode, a single 2x2 kernel is sufficient for filtering.
This mode is fully pipelined and allows Rampage to sustain
4 pixels per clock. In anisotropic mode, a variable number
of 2x2 neighborhoods is walked to generate the filter pattern.
This mode provides the highest level of realism, but has the
largest performance penalty. The sustainable pixel rate in
this mode depends on the number of neighborhoods walked.
Any even number of iterations can be supported, including
16 2x2 neighborhoods, which would produce 4 pixels in 16
clocks. In addition to these modes, trilinear filtering can be
applied, which first walks the filter pattern on one mipmap,
and blends this with the results of walking the same filter
pattern on the adjacent mipmap. Trilinear filtering is sup-
ported with all kernel walker modes, and results in further
improved quality at the cost of reducing performance when
it is enabled.

The basic operation of the kernel walker is as follows. A
fixed-point S and T coordinate per clock is generated in the
LMS unit, along with the aspect ratio of the anisotropic area
(aniratio), delta terms that define the line of anisotropy, and
the number of steps required (anisteps). If bilinear filtering
is enabled, the S and T values from the LMS unit are simply
forwarded downstream. If anisotropic texturing is enabled,
the kernel walker proceeds to walk the line of anisotropy,
generating up to 16 (or more) fixed-point S and T values.
Finally, if trilinear is turned on, the above processes are
duplicated for the second mipmap. The four kernel walkers
work in lock-step, in that they all walk the same kernel at the
same time. The output of each kernel walker is sent down-
stream to the TAD unit, where each of the four 2x2 neigh-
borhoods is expanded, generating 16 S and T addresses per
clock to be serviced by the texture cache. The kernel walker
also generates state information that is piped through the
cache unit, which enables the FLT block to recombine the
expanded kernel into a final filtered texel result.

FIG. 32 is a block diagram of the kernel walker according
to one embodiment. The kernel walker datapath consists of
a multiplexor 3202, adder 3204, and accumulator 3206 per
S and T. There are four walkers, one per output pixel. ADVS
decoupler 3208 exists on the input to the Walker to decouple
flow control stalls.

The kernel walker takes incoming S and T address, and
generates the initial kernel starting point by adding the setup
delta outputs to S and T. It then uses the accumulator output,
adding deltaS and deltaT to the accumulated value to walk
the kernel. For trilinear filtering modes, after walking the
kernel on the High-res mip map, the kernel is re-walked, this
time calculating the Initial value by taking the LMS S and
T divided by 2, and performing the same offset calculations.

The output S and T addresses is signed, with a dynamic
range of 4x the maximum texture size, to allow correct wrap
and clamp calculations, which are performed downstream in
the texture address unit along with 2x2 neighborhood expan-
sion. The format of S and T depends upon the LMS as
follows, with the position of the upper msbs up to and
including the mirror bits being fixed. The interpretation of
the lower bits varies according to the LMS level, as shown
in the table below. (See the section below describing a
texture address unit for a more detailed description):

US 6,778,181 B1

TABLE 6

For a 2Kx2K texture
Sign Extra Mirror Integer Fraction
[22] [21:20] [19] [18:8] [7:0]

For a 16x16 texture
Sign Extra Mirror Integer Fraction Unused
[22] [21:20] [19] [18:15] [14:7] [6:0]

For a 1x1 texture

Sign Extra Mirror Fraction Unused
[22] [21:20] [19] [18:11] [10:0]

The kernel walker accumulates delta values onto these S
and T coordinates to generate the neighborhood S and T
values for the texture address unit. The LMS unit is respon-
sible for shifting the anisotropic delta values such that they
are added to the fractional portion of the S and T address.
Thus, these s.8 values will arrive in the kernel walker
pre-shifted for accumulation as signed 20-bit values. The
extra msbs allow for multiple texture wraps for extreme
delta cases with large anisotropic ratios.

The Kernel walker contains a ROM lookup table used for
anisotropic filtering. The Anisotropic LUT is a 256-entry
table which stores the center and end scalefactors that will
be used to weight each 2x2 neighborhood in the full aniso-
tropic kernel. The LUT takes in the anisotropic ratio (4.4
fmt) as an input, and outputs a center scalefactor equal to
1/Aniratio and an end scalefactor equal to (1-(AniSteps-2)/
AniRatio)/2, where AniSteps is the next even number
greater than Aniratio. In this way it is guaranteed that the
sum of the scalefactors equals one.

In bilinear mode, the LUT outputs are bypassed such that
hWeight=sFrac, vWeight=tFrac, Scalefactor=1.0.

The scale generation logic exists to account for trilinear
filtering. When trilinear filtering is enabled, the raw scale-
factor from either the lookup table or the 1.0 scalefactor for
bilinear filtering is further scaled with an 8x8 multiplier to
generate the final scalefactor taking into account the relative
contributions of the two mipmaps. The scale generation
logic outputs one of four possible scalefactors. If trilinear is
disabled, the raw scalefactor from the LUTs is sent to
mult/acc section. Enabling trilinear will adjust the raw
scalefactor to send down either (scale* LMSfrac) or (scale*
(1-LMSfrac)) depending upon whether a high or low mip-
map is being used. This information is encoded into the
ker2tad pixel state field that is sent downstream from the
kernel walker. Finally point sampling can override the
scalefactor with either 1.0 or 0.0 depending upon whether
the any of the bilinear blend inputs were valid or not.

The control for the Anisotropic walker handles stalling the
LMS circuit, and contains the state machine for controlling
the data pipeline. Bilinear mode produces valid results each
clock, and anisotropic mode utilizes a state machine, which
is basically a counter that counts up to anisteps. In addition,
there is a state bit to indicate anisotropic direction (add or
subtract delta terms). Additionally there is an orthogonal
state bit to indicate the enabling of trilinear. When this bit is
enabled, the state machine repeats its behavior a second time
to account for fetches from the other mipmap. One note-
worthy feature related to trilinear filtering might be called
the “trilinear toggle”.

The “Trilinear Toggle” exists as an attempt to reduce
thrashing in the texture cache. In order to increase cache
efficiency and increase locality of addresses from cache

10

15

20

25

30

35

40

45

50

55

60

65

26

misses, it would be nice to stay on one trilinear mipmap as
long as possible. A simple optimization is to switch the order
of mipmap evaluation from one 2x2 quad to the next when
trilinear filtering is enabled. For instance, at the start of a
triangle, the first 2x2 quad filters the low mipmap first, then
the high mipmap. Then next quad filter the high first, then
the low. Each new triangle starts with the lower miprnap to
help ensure that the CSIM always matches the verilog.

The setup portion of the controller is responsible for
calculating the incremental displacements from the S, T
center of the Kernel to the subsequent 2x2 neighborhoods
which need to be fetched. For bilinear filtering, this unit
outputs zero. For anisotropic filtering, it outputs either dSdC
or dSAC/2 for the S component and dTdC or dTdC/2 for the
T component. (See Table 7, describing anisotropic filtering
below). If trilinear is enabled, the full sequence is repeated
for the second mipmap.

The control block 3210 also controls the multiplexers
shown in FIG. 32, along with generating a control signals for
the Filter and texture address unit (see below).

TABLE 7
Name Description
ker2flf[1] Filter control, start walk or accumulate
0->accumulate
1->load accumulator
ker2flt[0] Filter control,
0->do not assert flt_ valid
1->assert flit_ valid
ker2tad[3] TAD scalegen control, if aniso, O—>center scale, 1-
>edge scale
ker2tad[2] TAD scalegen control, filter mode/scale
0->bilin, scalefactor = 1.0
1->aniso, scalefactor from aniso LUT
ker2tad[1] TAD scalegen control, trilinear enabled
ker2tad[0] TAD scalegen control, trilinear mipmap level (0—

>low, 1->high)
selects scale*LMSfrac or scale*(1-LMSfrac)

The VIDDEV_VTA *FILTER state (3*4=12 bits) is
used at the top of the control pipe to decide how to run
things.

The 2x2 Kernel is the baseline unit used for a simple
bilinear blend operation and is used for all forms of filtering.
The advanced filtering modes are performed by iterating
over a series of 2x2 kernels and scaling and accumulating
the results to achieve the desired effect. The fixed point S
and T coordinates are split into integer and fraction. The S
and T frac are sent directly to the Cache. The ker2flt state
bits are set to always load the filter accumulator and assert
valid. The neighborhood generator then generates the 2x2
block.

One disadvantage of both of the above kernels is that they
are based on the simplification that a circular pixel in screen
space maps to a circular region in texture space. This is
generally only true if a texture mapped polygon is normal to
the line of view. In most cases, as the polygon is rotated, a
circular pixel will map to an elongated oval region in texture
space. The LMS block computes the geometry and aspect
ratio of this area, and generates the appropriate controls to
setup the kernel walker, which then breaks down the rect-
angular region into the appropriate number of square 2x2
neighborhoods, for more accurate texture filtering. There are
three different ways to walk a line of anisotropy. One is used
if the anisotropic ratio is greater than 2, another if the ratio
is between 2 and 1, and finally the kernel walker reduces to
the baseline bilinear if the anisotropic ratio is set to one.

FIG. 33 is a graphical representation of sampling 3300
and neighborhoods 3302 with respect to anisotropic ratios.

US 6,778,181 B1

27

As shown, when the anisotropic ratio is at 1.0, a simple 2x2
neighborhood 3304 is walked. One sample is taken, with the
AniScale factor set to 1.0 When the anisotropic ratio is
between 1.0 and 2.0, the desired effect is that of sampling
overlapping 2x2 neighborhoods 3306. The amount of over-
lap is determined by the anisotropic ratio. The LMS block
uses this information to compute the offset of the two
samples, represented by dSAC and dTdC. Since two samples
are always taken, each has a scalefactor of 0.5, reflected in
AniScale. Thus, the two neighborhoods are walked as fol-
lows:

Clockl:Sout=Sin+dSdC/2; Tout=Tin+dTdC/2; AniScale=5=0.5
Clock2: Sout=Sout-dSdC, Tout=Tout-dTdC; AniScale=0.5

For Anisotropic Ratios above 2.0, AniSteps is used to
walk the line of anisotropy, using the following table.

TABLE 8
Clock Sout Tout AniScale
0 Sin + dSdC/2 Tin + 1/AniRatio
(push Sin) dTdCr2
(push Tin)
1 Sout + dSdC Tout + 1/AniRatio
dTdC
AniStep Sout + dSAC Tout + -
8/2 -1 dTdC (AniSteps-
2) /AniRatio)
/2
AniStep Sin - dSdC/2 Tin - 1/AniRatio
/2 (pop Sin) dTdCr2
(pop Tin)
AniStep Sout —dSdC Tout —dTdC 1/AniRatio
s-2
AniStep Sout — dSAC Tout —dTdC -
s-1 (AniSteps-
2) /AniRatio)
/2

AniRatio is a fixed point number between 1.0 and 16.0

AniSteps is an even integer between 2 and 16, basically

the next biggest even integer above AniRatio.

The Kernel walker starts at one end of the anisotropic line,
and generates 2x2 neighborhoods walking up the line using
the above AniScale factors. It then walks the same line on
the other Level of Detail to perform the Trilinear part of the
anisotropic walk. The AniScale factor and the LMS are used
to determine the AccumScale factor used to the Filter. On the
first walk of the anisotropic line, AccumScale=
AniScale*LMSfrac. On the second walk of the anisotropic
line AccumScale=AniScale—(AniScale*LMSfrac). The
Aniscale values from the table above are stored in a ROM
lookup table that exists in the filter block.

An optimization to the walking algorithm removes the
need to multiply (Anisteps—1)*dSdC/2 to reach the first
neighborhood. Instead, dSAC or dSdC/2 can simply be
accumulated as shown in FIG. 34, which illustrates aniso-
tropic kernel walking 3400 according to one embodiment.
As shown, the center S,T are pushed initially and after
walking half of the anisotropic line 3402, the starting value
is popped and the walking direction is reversed. Middle
neighborhoods are weighted by LOD*(1/AniRatio) while
endpoints a 3304, 3406 are weighted to make total weight=
1.0. A Low Res Mip MAP uses exactly the same stepping
pattern, but dSdC, dTdC don’t scale with the resolution
change.

Texture Address Unit (TAD) 818 (see FIG. 8)

The texture address unit (TAD) receives four s,t addresses
along with LMS, mode, and format information. For each

10

15

20

25

30

35

40

45

50

55

60

65

28

pixel in an input pixel quad, the TAD computes the s,t
integer space address for the top left texel in that pixel’s
bilinear neighborhood. This top left texel will be referred to
as that pixel’s “reference texel”. The s,t space address of a
reference texel, combined with the wrap mode bits in s and
t for the touched texture imply the locations of the remaining
three texels associated with that pixel’s bilinear neighbor-
hood.

The 16 total texel requests (4 explicit, 12 implied) are
aggregated by the TAD to a set of up to 4 or more requests
with up to 4 or more physical addresses each. These requests
are submitted to the color cache tag unit; enough informa-
tion is presented by the TAD and escorted down the pipeline
with the tag result to determine the location and cache entry
association of each of the 16 total texels.

The TAD as described herein supports the following
illustrative modes/options, among others:

1. Texture depths of 4, 8, 16, and 32 bits per texel,
including texture compression (4 bpp) and S2/D3D
compression (4 bpp/8 bpp), which has a linear style
surface allocation of 4x4 blocks.

2. Edge modes of: clamp, wrap, mirror, and clamp to
black (for cube mapping, etc).

. Clamped, non-MIP-mapped non-power of 2 map sizes.
. Map sizes up to 2048x2048 or more in all modes.

oW

. T-Split legacy mode.

6. Tiled/linear surfaces.

The TAD unit takes in 4 texture map indices s, t, 1 pixel
LMS for all 4 pixels, and several texture map descriptors.
The TAD unit then produces a set of 4 to 16 physical
addresses that touch all memory locations used to fill the up
to 16 or more texels associated with the requested pixel
quad. In the process of going from a pixel quad to a physical
address sequence, the TAD performs three distinct func-
tions.

1. Address calculation from s, t, LMS, and map descrip-

tors.

The map descriptors include addressing modes (linear/
tiled, tile format), base address(es), multi-base
modes (multi-base enable, multi-base mode), sam-
pling mode (point/non-point), texture format (is it 4,
8, 16, or 32 bit per texel), edge mode (wrap, mirror,
clamp, clamp to black), computed texture resolution
(in S or T), clamp size in S and T for npt textures,
tsplit mode (odd/even map splitting for legacy
support).

The output of the address calculation is a set of s, t
address space addresses. The addition of a base
address to complete the conversion to physical
addresses actually occurs in the texel group walker in
a second s, t data path.

2. Texel aggregation into groups aligned to color cache

footprint (4x4 or 16x1) boundaries.

The texel aggregation process associates each of the 16
texels with their alignment to a color cache footprint
(sa[2], ta[2] in tiled mode]). The combined status of
the requested texels will be referred to as texel
context.

3. Texel group walking of the 1 to 16 groups determined
by the aggregation step.

At the risk of being tarred and feathered, a group is
defined as the set of texels that are associated with a
given cache footprint on one color cache tag request
cycle. A “group request” is therefore a request to a
cache footprint where the footprint encompasses a

US 6,778,181 B1

29

set of texels in said group. Thus, with four available
cache footprint alignments available, up to four or
more “groups” may be requested per cycle. In each
cycle, up to four or more groups are processed; one
group in each of {S,T}={0,0}, {0,1}, {1,0}, {1,1}
alignments. For example, a maximum of 4 TAD
walker cycles are needed to process the worst case of
16 different physical addresses.

Address calculation uses per pixel data and per map data
to arrive at a set of texture space addresses (sa and ta) for the
pixel quad. The pixel quad s and t coordinates {(s0,t0),
(sL,t1), (s2,12), (s3,t3)}, their associated LMS, and each
pixel’s positive overflow bit in s and t (ovs and ovt) are taken
in by address calculation. The map descriptors and the quad
LMS (or per pixel LMS values if LMS dithering is enabled)
are used to shift, clamp, invert, and otherwise manipulate the
raw s and t values received by the TAD unit.

Each s and t is a signed with a total range of two times
(+/-4095 versus +/-2048) the maximum S or T resolution
with 8 fractional bits; thus each S and T has the following
format.

TABLE 9

negative

OV|1’1’1

integer [18:8] | fraction [7:0] |

Each LMS can range from 0 to 11 with 8 fractional bits.
The fractional bits are passed through the TAD and texture
cache. The computed LMS integer component (clms)
received by TAD is in following format:

TABLE 10

clms [3:0]

The address calculation unit needs to know the number of
bits per texel for a given map. This is determined by the
map’s texture format through a simple lookup.

Additional state data tells the address calculation unit how
to handle edge cases, which will be discussed later in this
section.

FIG. 35 shows a texture map inset 3500 on a drawing
surface 3502 according to one embodiment. If the S and T
texture map dimensions are not integer multiples of a
micro-tile size in each dimension for the current bit depth,
then the texture map is padded to fill out the micro-tile in that
dimension. For large power of two maps, the S and T
resolution is the same as the S and T surface size. For maps
with a smaller resolution than 32 texels in either dimension,
special handling can be used, as will be understood by one
skilled in the art.

The address calculation unit receives the maximum S and
T resolution available for a given map. The minimum
resolution is also set for the case of LMS clamping, but this
is handled in the LMS calculation unit. The TAD unit
responds to whatever calculated LMS values(s) it receives.
Either 1 or 4 LMS values will be handed to the TAD unit,
via the KER1 unit. Only 1 LMS is used in normal operation;
this one value applies to all 4 pixels. 4 LMS values (one per
pixel) are used per cycle if LMS dithering is turned on.

FIG. 36 is a graph 3600 illustrating the organization of sa,
ta address space. i0 (sa or ta integer address bit 0) is defined
to have a constant meaning in sa, ta space, that of the least
significant integer selection bit in the texture map. The
origin 3602 is in the upper left corner; thus, in the positive
s and t direction the map builds to the right and down.

10

15

20

25

30

35

40

45

50

55

60

65

30

The S resolution and T resolution for each map is an input
to the address calculation function and defines the extent in
S and T before an edge condition. Edge conditions are
handled by accepting an MSB bit (bit “m™) above the MSB
bit needed for addressing the specified map resolution (i10
for a 2K map dimension, i9 for a 1K dimension, etc.). The
“m” bit determines if an sa or ta address hits a wrap, mirror,
or clamp edge condition; edge conditions will be discussed
in detail later.

FIG. 37 is a graph 3700 showing how sa and ta indices are
extracted from raw s and t values coming from the kernel
walker. In FIG. 37, the “s” bit 3702 is the sign bit, where “1”
indicates negative and “0” indicates positive. The “m” or
mirror bit 3704 indicates if the sample point is in the lower
or upper portion of that dimension’s range. The integer
address bits, i, to i, 3706 indicate full texel increments.
The fractional bits £, to f, 3708 indicate blend factors
between texels.

For a given map resolution, the s and t inputs are each
shifted right by a maximum map level minus the current map
level for the pixel quad. The m bit is always taken as the
most significant bit (r,,) presented by the kernel walker. The
most significant bit for a given map size is then taken from
r;5, and so on. Thus, at each map level the raw s and t values
are shifted right by an appropriate amount to yield sa and ta
texture address bits. Zeros are essentially shifted in from the
left to fill the upper sa and ta bits.

The ovs and/or ovt bits are asserted when any of the s or
t bits that are more significant than r,, are set to 1. These
overflow (ov) bits allows for proper clamping when the s or
t value is greater than or equal to 2.00. The m bit alone does
not convey enough information by itself.

After this processing of raw s and t values, values for sa
and ta are obtained, which each consist of and integer
component and a fractional component. Together these
components are used to address texels for the purpose of
bilinear sampling into the texture map.

The detailed selection process of texel colors for bilinear
blending, from sa and ta values, will now be discussed. The
first step is to define the meaning of a texel center. A texel
center 3800 is shown in FIG. 38. A texel center is defined as
being located at 0.500+k, where k is an integer in sa or ta.

Now that a definition of a texel center has been provided,
a definition of point sampling and bilinear sampling in to
texture space will be presented. Point sampling is achieved
by truncating the fractional bits of sa and ta and taking the
integer portions of sa and ta as the selection address. FIG. 39
is a graphical illustration 3900 of point sampling. In FIG. 39,
the darker texel 3902 is point sampled when the integer sa
and ta bits point to that texel (in this example, sa= . . .
1110.frac, ta= . . . 0110.frac) and the fractional bits range
from 0.00000000 to 0.11111111.

FIG. 40 is a graphical depiction 4000 of bilinear sam-
pling. Bilinear sampling is the primary texture sampling
mode utilized in the VTA. Bilinear sampling needs four
adjacent texels (a 2x2 block) and two blend weights
(horizontal and vetical blend factors). The sample point
defined by, sa, ta is centered in the four texels. To determine
which four texels to use, subtract off 0.500 in sa and ta and
truncate to the resulting integer components. In FIG. 40, the
satta sample point 4002 has 0.10000000 subtracted from
each sa and ta component. The resulting integer component
yields the integer address of the upper left texel 4004; this
relationship holds even when crossing the positive to nega-
tive boundary in sa and ta. Now that the upper left texel is
determined, the other three texels can be determined based
on their relative offset from the upper left texel. Fortunately,

US 6,778,181 B1

31

this is a simple relationship. Texel B 4006 is immediately to
the right of texel A (+1.00 in sa space, +0 in ta space). Texel
C 4008 is immediately down from texel A (+1 in ta space,
+0 in sa space), and texel D 4010 is down and to the right
from texel A (+1.0 in both sa and ta dimensions).

The texture cache uses the relationship of texels B,C, and
D to texel A to minimize the amount of context needed in its
color cache context FIFO. Please see the description of the
cache for more details.

Only four physical addresses are processed by the cache
per cycle, according to one embodiment. Thus only 4 unique
physical addresses are generated per cycle in the physical
address generation phase. Each of the four physical
addresses correspond to a 4x4 block (or a 16x1 line), a color
cache entry. The LSB+2 bit in sa and the LSB+2 bit in ta
together form an alignment pattern for the 4x4 blocks. One
and only one physical address of each of the four sa,ta space
alignments is permitted per cycle. The four physical address
ports are labeled 00, 01, 10, 11, and always correspond to
their respective alignments.

Because a 256 bit read atom can represent a 2x2 block of
4x4 texels, it is possible for compressed format textures to
generate four identical physical addresses (there is an opti-
mization for this handled in the raw cache-see the texture
cache description for more details). But the lower signifi-
cance sa and ta bits select which texel to extract from each
4x4 block.

FIG. 41 is a graphical depiction of a plurality of texels
4100 that illustrates how the integer portion of sa and ta
addresses 4102, 4104 build in the positive and negative
directions. The integer and fractional components both
increase as the number increases, from negative to positive
through zero. The sa and ta bits wrap, with the mirror (m) bit
indicating if the sample is in the normal or wrapped part of
the integer range. The ovs and ovt bits indicate a positive
overflow out of this wrapped range. The ovs and ovt bits are
only significant for clamping.

FIGS. 42, 43 and 44 are texel maps 4200, 4300, 4400 that
illustrate wrapping, mirroring, and clamping, respectively.
Wrapping, mirroring, and clamping occur when the vertex s
or t value hits or exceeds the range 0.00 to 1.00.

Regular clamping is illustrated in FIG. 44. FIG. 45
illustrates clamp to black 4500. Clamp to black clamps to
transparent black when the s,t selection hits the clamp
constraint, but maintains the fractional s and t values even
after clamping.

The TAD unit accounts for Mip-Map pre-filtering of a
texture image. The maximum dimension of the available
map is given by the computed LMS value. The log2 of the
aspect ratio and larger dimension (s or t) of the map is also
specified and defines the smaller dimension. The s is larger
signal indicates which dimension uses the larger of the two
sizes. Thus, powers of two rectangles from 1x2 K to 2Kx1
in size are defined for Mip-Mapped textures.

The specified base address always refers to the map with
a 2K dimension. If the data for the largest map is not present
the map base pointer still points to the largest dimension; by
always defining the base pointer to reference the maximum
resolution map, the LMS offset chain is fixed and easier to
compute and verify. The max and min LMS clamp points
prevent the texturing unit from reading non-valid map data.
Each subsequent LMS level has a fixed offset from that base
address. An example of a square map 4600 is shown in FIG.
46.

In FIG. 46, an aspect ratio of 1 is specified. The LMS 11
base pointer references the first address location of the 2K by
2K map 4602. By way of example, if the maximum reso-
lution map available is a 256x256 then the map base pointer
still points to the LMS level 11, with the LMS maximum is
set to 8. Non-related data may fill map levels 11, 10, and 9.

10

15

20

25

30

35

40

45

50

55

60

65

32

FIG. 47 shows the two cases 4702, 4704 of an aspect ratio
of 2. The offset pointer is the same in both cases until the
width hits 32 texels. At the LMS=5 mark the s and t values
are special cased through a packing transform equation.

The function for computing the address offset of a given
LMS is calculated from the summed address spaces from
LMS=11 to the current LMS. LMS 5 through O all share the
same address offset since LMS levels 5 to 0 are packed into
one surface.

The following paragraphs describe LMS packing for LMS
5 through LMS 0 for 32, 16, 8, and 4 bbp over all allowable
aspect ratios. This packing scheme may not take t split into
account directly. The lower map levels may need to be
redundantly allocated in the odd and even split spaces, with
the odd or even split levels populated within the packed
surface.

The packing transform equations are given below. This
packing scheme and resulting equations handle all aspect
ratio cases for LMSS5 to 0.

S and T transforms packing transforms:
it (s_is_larger) { .
81 =S80+ ((clms <4)?(32-2 (clms+1)):0
 t1=T0+ ((clms==35)?70:(ar>4)?1:
2 (5-lar)) ;
}
else { /* lis_is_larger */
0 81=S0+((clms==5)70:(lar>4)?1:
2 (5-lar)) ; .
t1=TO+ ((clms <4)? 32-2 (clms +1)):0
)}
}
The surface size is calculated as follows:
if ((s_is_larger) {
s_dim = 32; /* pixels */
if (bpp==4)
t_dim = (lar>=2) ? 16 : (lar==1) ? 32 : 4&;
else /* bpp = 8 cr 16 or 32 **/
t_dim = (lar>=3) ? 8 : (lar==2) ? 16 :
(lar==1) 7 24 : 48;
else { /* Is_is_larger */
t_dim = 32; /* pixels */
if ((bbp==4) || (bpp==9))
s_dim = 32;
else if (bpp == 16)
s_dim = (lar==1) ? 32 : 16;
else /* 32 bpp */
s_dim = (lar==1) ? 24 : (lar==2) 7 16 : &;
}
Where:
s_is_larger=indicates s is larger dimension
clms=calculated LMS for current pixel quad.
lar=log of aspect ratio (1=>0, 2=>1, 4=>2, 8=>3, ctc)
bpp=bits per pixel, the pixel depth
t_ dim=t dimension, given in pixels
s_ dim=s dimension, given in pixels
sO=pre-transform s
sl=transformed s
t0=pre-transform t
tl=transformed t

FIGS. 48-54 show the packing 4800, 4900, 5000, 5100,
5200, 5300, 5400 for several representative cases from

US 6,778,181 B1

33

LMS=5 to LMS=0. The gray and white checkerboard pattern
indicates micro-tile boundaries. Color cache boundaries are
4x4 aligned blocks in each case; the alignment key is the
upper left corner of the surface.

FIG. 48 illustrates the packaging 4800 for 16 bbp and an
Anisotropic Ratio (AR) of 1. FIG. 49 illustrates the pack-
aging 4900 for 32 bbp and an AR of 1. FIG. 50 illustrates the
packaging 5000 for 8 bbp and an AR of 32, 64, 128, 256,
512, 1024, 2048 where S is larger. FIG. 51 illustrates the
packaging 5100 for 32 bbp and an AR of 2 where T is larger.
FIG. 52 illustrates the packaging 5200 for 32 bbp and an AR
of 8 where T is larger. FIG. 53 illustrates the packaging 5300
for 16 bbp and an AR of 32, 64, 128, 256, 512, 1024, 2048
where T is larger. FIG. 54 illustrates the packaging 5400 for
4 bbp and an AR of 32, 64, 128, 256, 512, 1024, 2048 where
T is larger.

Linear surfaces are allocated with a width that is a
multiple of 16 texels. Two options can be utilized for
handling the cases where the native width of the surface is
less than 16 texels:

1) Allocate an individual surface for each LMS level

2) Pack in the lower LMS surfaces to the right of the

larger maps.

The text address module’s overall architecture 5500 is
shown in FIG. 55. In the first block 5502 entering TAD
(called “raw st to int.frac data path”) the S and T values for
each of the four pixels are cast from a fixed point 0.00 to
2.00 range to an integer-fraction representation, based on
map size information and the current LMS of each texel. At
the same time, NPT clamping is evaluated. Also in the first
stages of TAD, the upper left texel address is calculated by
offsetting the sample point by a distance of (-0.5,-0.5).

Next, all pixel aggregation information needed for the
pixel quad in progress is computed in the block 5504.

The TAD controller state machine receives the aggrega-
tion information through the stall de-coupling block 5506
and determines if a stall is desired. This logic is expected to
take a significant portion of the clock cycle, necessitating the
stall de-coupling module. The control SM 5508 walks the
pixel quad, submitting the appropriate requests to the color
cache tag unit, up to four or more physical addresses per
cycle. The physical addresses corresponding to the 4x4 or
16x1 cache entry alignments in s,t space.

The “s,t data path” block 5510 computes the final s,t
values to be used in the computation of physical addresses.
Finally, the physical addresses are computed, through
instantiation of the standard X,Y to physical address trans-
lation module.

FIG. 56 illustrates the Raw S,T data path 5600. Two
operations are applied to the raw s,t data first. The s and t
values are individually shifted per pixel, based on that
pixel’s computed LMS (along with aspect ratio and s is
larger flag). At the same time, if NPT is enabled for the given
pixel quad, then the texel valid mask is modified to reflect
NPT clamp conditions. This is the last stage that needs to
know if the quad is associated with an NPT map. Next, the
upper left texel coordinate (in integer s,t space) is computed
for each pixel. This result is tint and sint values for each
pixel. Together tint and sint form the texel space address for
a pixel’s reference texel.

FIG. 57 shows the matching operations utilized to deter-
mine texel grouping. Only the S channel 5700 is shown; an
identical instance of the logic shown is needed for T.
Together the two instances of the match logic (one for S, one
for T) compute all necessary information in one cycle for the
group walker to progress; the walker may take up to 4 or
more cycles.

10

15

20

25

30

35

40

45

50

55

60

65

34

FIG. 58 shows a 2x2 set 5800 of 4x4 cache entries. The
location of the reference texel 5802 is shown in black. The
grayed out 4x4 cache entries 5804 (one texel from each of
the 3) are used to satisfy the texel requirements of the
bilinear neighborhood associated with the reference texel.
The reference texel explicitly touches the 4x4 cache entry it
lands on; in this example the other three cache entries are
implied. On the right side of FIG., 58 the four regions of a
4x4 5820 are marked with labels 5822, 5824, 5824, and
5826; if a reference texel lands in the upper left region 5822
then only one 4x4 block (cache entry) is needed for the
associated pixel’s bilinear neighborhood. If a reference texel
lands in the lower right of an aligned 4x4 block, then 4 cache
entries are needed (as shown in the figure on the left).

Note that only one each of the four cache alignments are
preferably posted per cycle.

A fixed priority assignment establishes the submission
order of requests for a given cache alignment, with pixel 0
having the highest priority and pixel 3 having the lowest
submission priority. The reference texel for pixel 0 can
preclude pixel 1, pixel 2 or pixel 3 from posting a request in
the same cycle as pixel 0’s request. Thus if pixel 0 needs
data from t[2],s[2] alignment “01” then no other requests for
alignment “01” are possible in the same CC FIFO push
cycle.

The restriction of posting only one each of the four cache
alignments per cycle comes from the fact that the color
cache tag unit can only tag compare one each of the four
alignments per cycle. Refer to the section below discussing
the VTA Cache for a description of the color cache tag
operation.

In FIG. 59, a 3x3 set 5900 of 4x4 blocks in s,t space are
shown. The center 4x4 cache entry is where a reference texel
lands. The center 4x4 is categorized into four regions. If a
reference texel lands in region 5902, then one aligned cache
entry is needed to satisfy the bilinear neighborhood. If a
reference texel lands in either region marked 5904, then two
4x4 blocks are needed; two of the required texels will come
from the adjacent 4x4. If a reference texel lands in the region
marked 5910, then four 4x4 blocks are needed and one texel
is taken from one each to form the bilinear neighborhood.

In FIG. 59, the 4x4s 5920 are labeled “a” through “i”. If
the reference texel for pixel 0 (the highest priority pixel)
lands in region 1 of block e, then pixel 1 (the next highest
priority pixel) can take up to 3 or more additional 4x4 blocks
to satisfy it’s bilinear neighborhood. The allocation of 4x4
blocks continues until either all four possible alignments in
T[2],S[2] are taken or no more reference texels can allocate
a block in the current cache request set of up to four or more
4x4 alignments.

The aggregation logic is a fairly complex priority tree.

The final s, t data path 6000 is shown in FIG. 60. This
logic provides for explicit neighborhood calculation and
pass-through of reference texels for X, Y to physical calcu-
lation. Finally, this logic provides the necessary muxes to
align requests to their appropriate cache alignment.

Texture Cache (TC) 820 (see FIG. 8)

The Texture Cache provides texel data to support the VTA
pipeline while minimizing redundant texture memory
accesses through a two level cache structure. Data is
retrieved and translated from either local SGRAM or AGP
memory to enable bilinear filtered texturing of four pixels,
of a 2x2 quadrant of pixels, in every clock.

An Address Unit converts S and T addresses into physical
memory addresses and a Data Unit converts raw texture data
into true color data. Raw texture data is stored in a large first

US 6,778,181 B1

35

level “raw” cache and true color texture data is stored in a
smaller second level “color” cache.

Textures sought may be compressed and uncompressed.
Uncompressed textures arrive in 8, 16 and 32 bit formats and
compressed textures arrive in 4 (texture) and 16 (frame) bit
formats. Each format is retrieved in order and entered into
the two level texture cache pipeline.

The following paragraphs describe a method for building
a texture cache using a 4 way set associative cache with 16
cache lines, which can do sixteen texel accesses
simultaneously, uses a least-recently-used (LRU) replace-
ment algorithm, and has no stall miss penalty for up to 4 or
more misses simultaneously.

The texture cache preferably provides the following desir-
able features:

TABLE 11

The cache supports bilinear filtering on four pixels per cycle.
Minimization of the time spent stalling the pipeline to service cache
misses

is provided.

Trilinear filtering is performed by taking multiple cycles. The cache
replacement algorithm is friendly to trilinear filtering.

Multiple textures per pixels are supported, with 8 or more textures per
pixel.

When performing bilinear filtering of four pixels per
cycle, four somewhat independent S,T values (texture
coordinates) are generated. Each of these S and T values are
then used to generate a 2x2 neighborhood of pixels, gener-
ated 16 texel address requests per cycle. During
mipmapping, the independent texture coordinates are close
together, increasing cache efficiency. The 2x2 neighbor-
hoods also have good cache locality.

Since there are sixteen address requests per cycle, the
percentage of cycles with cache misses can be very high.
Stalling for cache misses can greatly reduce performance.
Because of this, ensuring that cache misses can be effec-
tively pipelined is preferred. This means the cache replace-
ment algorithm needs to run in one cycle, and that the missed
cache line can be loaded before being used.

Since using trilinear filtering causes two texture to be
fetched with different cache locality, and multiple texturing
using lightmaps also causes two texture maps to be fetched
with greatly differing locality, a cache replacement algo-
rithm that doesn’t cause re-fetching of data that’s was
recently replaced.

A four way set associative cache with an LRU replace-
ment algorithm is described in the following paragraphs.
Initially, a fully associative cache was investigated, but the
potential downside is in the cache replacement speed. The
time to perform 256 (16*16) tag compares, compute the
least recently used, and replace it with a cache miss is the
critical path in determining the speed that the entire pipeline
will run at. This new approach reduces the number of tag
compares per LRU, reducing the size of this critical logic.
Reducing the physical size of this circuit will improve cycle
time.

FIG. 61 depicts a cache line set association 6100 accord-
ing to one embodiment. The cachelines are 4x4 sets of
texels, and the cache lines are organized into four “sets”,
based on the S and T address bit number 2. This means each
cache line is surrounded by cache lines in other sets.

Since the cache contains 16 cachelines, each set contains
4 cachelines. This allows for a simple LRU circuit per set,
enabling trilinear and multiple textures to use the cache
efficiently.

10

15

20

25

30

35

40

45

50

55

60

65

36

Worst case, there can be sixteen cache misses in one
cycle, but this case occurs when all four S,T neighborhoods
straddle corners of different 4x4 cachelines. This ensures
that when there’s sixteen cache misses, they will end up
being four misses in each of the four sets, avoiding a
deadlock condition.

FIG. 62 shows an address generation portion 6200 of the
pipeline for generating an address from on S,T pair. Logic
here is duplicated four times. The first stage (which is the
last stage of the kernel walker) takes an S ant T pair, and
expands it out into a 2x2 neighborhood of texels, and also
determines the 4x4 cachelines that all texels occupy. Map-
ping info is also generated to map cache lines to texel
addresses.

Each of the four cacheline addresses are grouped with
similar cacheline addresses from other Neighborhood
generators, based on which set the address belongs in. The
four addresses for the given set are then compared for
uniqueness, and the four addresses, along with a per-address
“unique” bit, to the tag logic. The tag logic performs cache
hit/miss determination, and cache line replacement, sending
the missing address to the uncompressed cache. When all
cachelines have been serviced, the mapping info from the
tag and from the neighborhood generator are used to deter-
mine the cache address that locates each pixel. These sixteen
“cache addresses” are sent through a FIFO to the cache
RAM.

FIG. 63 depicts tag logic 6300 of the cache. Even though
there are only four cachelines per set, the tag logic actually
has five tags. In normal operation, when the previous cycle
was a cache hit, TagE is invalid. When a miss occurs, the
first missing unique address is loaded into tag E, while the
LRU circuit invalidates one of the other tags. One cycle
later, TagE is moved into this invalid location. This allows
for each set to get one miss and not stall the pipeline. More
than one miss, however, will cause a cache miss. During the
time TagFE is valid, the mapping logic is told that any hit on
TagE maps to the invalid tag’s cache memory location.

Since there are four sets, each set can get one miss without
causing a pipeline stall. This means in normal operation
(decent locality within the triangle), the pipeline should
never stall inside a triangle and also should rarely stall when
starting a new triangle.

Several advantages of the four way set associative
approach are set forth in the following table.

TABLE 12

The tag logic, including LRU replacement logic is very small, enabling a
faster cycle time on the rest of the graphics pipeline.

The uniqueness identification circuit is also smaller, reducing gate count.
Further, if a completely fully associative cache is selected, the same
uniqueness logic can be used.

The method supports up to four or more cache misses without stalling.

The following paragraphs describe the functional features
utilized to support S3 decompression in the VTA texture
cache and describes the memory arrangement of the various
surface cases.

There are five S3/DX6 formats; one utilizes 4 bits per
pixel, and four formats are represented by 8 bits per pixel.
These formats are be mapped onto a 256 bit (32 byte) read
atom supported by the VTA texturing unit.

Memory organization is discussed first to establish a
memory organization that satisfies both the S3 constraints
and the VTA texturing unit constraints. Then specific addi-
tions to the existing TAD and TC units are outlined.

US 6,778,181 B1

37

FIG. 64 illustrates a large DXTn surface 6400. The S3
compressed texture surface type is a progressive linear
format surface. Increasing memory addresses build to the
right first and then down. Each separable memory quanta in
the DXTn format is either a 64 bit unit representing a 4x4
color block (DXT1 format) or a 128 bit unit representing a
4x4 color block (DXT2, DXT3, DXT4, DX127 formats).

In FIG. 65, a large surface 6500 is shown for the DXT1
format with 64-bit units. Each 64 bit unit decompresses into
a 4x4 color patch. Each 256-bit read atom corresponds to
four 4x4 patches.

FIG. 66 illustrates a large surface 6600 in the DXT2,3,4
and 5 formats, where each 4x4 takes 128 bits. Each 256 bit
read atom contains two 4x4 patches.

Smaller surfaces can use special casing to efficiently
utilize 256 bit read atoms. In all, five general modes are
used; three modes for the DXT1 format and two modes for
the DXT2,3,4,5 formats.

FIG. 67 shows the memory layout 6700 within a single
256 bit read atom in DXT1 (4 bpp) mode. The left most 4x4
block corresponds to memory interface bits [63:0], the lower
8 of 32 bytes. This layout is used for surfaces that are 16
texels wide or wider and will be referred to as “mode A.”

FIG. 68 shows the S, T space alignment 6800 correspond-
ing to mode A.

FIG. 69 shows a surface 6900 that is 8 texels wide and
arbitrarily tall. This special case will be used for surfaces
that are exactly 8 texels wide and will be referred to as
“mode B.”

FIG. 70 shows the S,T space alignment 7000 for mode B.

FIG. 71 shows a surface 7100 that is 4 texels wide and is
used for surfaces that are 4, 2, or 1 texel wide and arbitrarily
tall. This arrangement is defined as “mode C.” Surfaces that
are 1 wide are presented to TC as 2 wide with a weight and
valid clamp applied by TAD.

FIG. 72 shows the alignment 7200 for mode C. Note that
alignments 1 and 3 are never used. The option of interleav-
ing 02 with 13 was explored and discarded; doing so would
introduce a large number of special cases throughout the
TAD pipeline for an infrequently used surface mode and
surface dimension.

The four remaining S3 compressed texture formats
(DXT2 through DX127) are all 128 bits per 4x4 block.
These four 128 bit formats utilize two tiling modes: “mode
D” and “mode E.” FIG. 73 shows a DXT?2 to DX127 surface
7300 in mode D. This mode is used for surfaces 8 texels
wide or wider.

FIG. 74 shows the alignment 7400 of mode D in S,T
space. The surface can be arbitrarily tall.

When a DXT2 to DX127 surface is 4 texels wide or
narrower mode E is used. FIG. 75 illustrates mode E 7500.

FIG. 76 shows the alignment of mode E in S, T space. The
surface can be arbitrarily tall. Note that alignments 1 and 3
are never used.

The DXTn mode (A, B, or C for DXT1; D and E for
DXT2-5) is specified to TC’s format unit by bits [3:2] of the
wrapst context field. In this section Isbst values are labeled
on the Figures.

For surfaces shorter than 8 texels, additional wrapping
information is used by the tc_fmt unit; explicit height
information is conveyed in bits [1:0] of the wrapst context
field. “No wrap” indicates to the tc_ fmt unit that it should
not apply small surface wrapping since the surface is larger
than 4 tall.

10

15

20

25

30

35

40

45

50

55

60

65

38

FIG. 77 illustrates alignment blocks 7700 and wrapst
values for Mode A. Mode A is used with DXT1 where the
surface is 16 texels wide or wider. Surfaces can be allocated
in integral multiples of 16 texels; this happens naturally
within the definition of a DXTn surface, but not if an NPT
surface is attempted.

FIG. 78 illustrates alignment blocks 7800 and wrapst
values for Mode B. Mode B is used with DXT1 surfaces that
are exactly 8 texels wide. If the surface is 8 wide but less
than & tall, then the blocks marked 2 and 3 can be allocated
(but left vacant) to assure 32 byte allocation granularity.

FIG. 79 illustrates alignment blocks 7900 and wrapst
values for Mode C. Mode C is used with DXT1 surfaces that
are exactly 4 or exactly 2 texels wide. With wrapst[3:2]=11,
a surface that is exactly 4 wide is assumed. If the surface is
less than 16 tall, all four blocks can be allocated (but left
vacant) to assure 32 byte allocation granularity.

FIG. 80 illustrates alignment blocks 8000 and wrapst
values for Mode C when wrapst[3:2]=10. In this case, a
surface that is exactly 2 wide is assumed. If the surface is
less than 16 tall, all four alignment blocks can be allocated
(but left vacant) to assure 32 byte allocation granularity.

FIG. 81 illustrates alignment blocks 8100 and wrapst
values for Mode D. Mode D is used with DXT2 to DX127
where the surface is 8 texels wide or wider. Surfaces can be
allocated in integral multiples of 8 texels; this happens
naturally within the definition of a DXTn surface, but not if
an NPT surface is attempted.

FIG. 82 illustrates alignment blocks 8200 and wrapst
values for Mode E with a 4 wide surface, wrapst[3:2]=11.
FIG. 83 illustrates alignment blocks 8300 and wrapst values
for Mode E with a 2 wide surface in Mode E, wrapst[3:2]=
10. Mode E is used with DXT2 to DX127 where the surface
is exactly 4 or 2 texels wide. If the surface is less than 8
texels tall both blocks may be allocated (although block 1
may be left vacant) to assure 32 byte allocation granularity.

The wrapst[3:2] code 01 is unused in DXT2-5 formats.

Supporting the five S3 compressed texture formats in the
VTA preferably requires the TAD and TC modules to
accommodate a mixed linear/tiled format.

In the S3 format, the TAD unit may perform a number of
exceptions/additions to the normal linear and tiled mode
functions. The TAD unit computes a stride that corresponds
to the necessary stride for a linear surface to accommodate
the DXTn stride. Although NPT surfaces are explicitly not
defined by the DXTn format spec, if an NPT surface is
submitted in one of the DXTn formats, the stride register
will indicate the number of 4x4 blocks wide the surface
is—this stride is used to compute a corresponding linear
surface stride.

The TAD categorizes the surface as a mode A, B, C, D, or
E (previously described) and overload the meaning of the
wrapst bits to convey the specifics of the selected mode. See
the previous section on defining small surface wrapping. The
TAD also provides the appropriate two S,T selection
(“Isbst”) bits.

The STM (S, T merge) module accounts for the five
modes (A-E) of tiling since three S3-unique rules of adja-
cency are introduced to support modes A, C, and E. The
geontext s134, 5130, st4, and st0 fields are adjusted to reflect
an appropriate sub-selection. The gcontext p181, pg8, pg4,
and pg0 fields are computed to reflect the S, T space
alignment of the four or two 4x4 texel blocks.

In the TC unit the only module that needs to know about
the S3 formats is the FMT unit. The format unit modifies its

US 6,778,181 B1

39

treatment of an implied Y+1 texel location. Modes B and D
are equivalent to tiled and linear Y+1 rules, but modes A,C,
and E introduce exceptions.

The format unit detects that a format DXT1 though
DX127 format is being sent to suppress loading of the
palette. In the DXTn modes, the format unit examines the
wrapst bits to determine which width configuration is speci-
fied and details of the specified mode indicating width and
height of a surface; the width and height details are used
when computing Y+1 and X+1 wraps. The format unit
preferably detects DXT1 or DXT2-5 because the wrapst bits
have different meanings for DXT1 versus DXT2-5. See the
previous section on small surface wrapping definitions.

Filter Unit (FLT 822 (sce FIG. 8))

The filter unit of the VTA is the companion unit to the
kernel walker. The filter is responsible for taking in the
multi-neighborhood expanded kernel generated by the ker-
nel walker, and filtering the volume of texel data generated
by these requests back down into a single quad of 2x2
textured pixels. Three or more filtering modes can be
supported, among them, point-sampling, bilinear, and
trilinear, with both bilinear and trilinear having the addi-
tional option of enabling anisotropic filtering. Like all of the
blocks in rampage, the filter operates on 4 pixels, or a 2x2
quad, per clock cycle.

In order to support this, the filter unit is composed of 4
pixel filters. Each pixel filter is composed of a basic bilinear
interpolator (bilerp), to perform a bilinear filter on 4 texel
values for each pixel. In addition, the result of this bilinear
blend can be scaled and accumulated with other bilinear
results from previous sub-kernels to generate properly fil-
tered pixels in the advanced filter modes. Thus, the filter can
generate a valid quad in each clock in bilinear mode, but
may use multiple clocks to produce a valid quad when
performing anisotropic or trilinear filtering. As a result the
filter is a bubble-producing unit in the VTA pipeline. These
bubbles are later collapsed in the combine unit. The controls
for the filter are generated in the kernel walker and sent
downstream to the filter via two pixel state bits.

For Bilinear filtering, the filter unit receives sixteen texel
values for the four pixels in the quad, and the S and T
fractions, along with the least significant integer bit of S and
T. If the integer bit is set, the bilerps received 1.0-Frac. If the
integer bit is clear, the bilerps receive the fraction value. The
Multiplier on the output receives a scale value of 1.0 from
the kernel walker/TAD portion of the VTA pipeline. Bilinear
Filtering is a degenerate case for Anisotropic filtering. It is
anisotropic on one filter unit with a max anisotropic ratio set
to 1.0. In other words, it is a single iteration through the filter
unit.

For Anisotropic filtering the filter performs the same
functionality as in bilinear mode, except that each bilinear
neighborhood is scaled by a fractional scale value, and a
number of scaled bilinear neighborhoods is accumulated
over multiple clocks to generate the final textured quad
output. The sum of the scalefactors applied to the bilinear
neighborhoods always will sum to one, and comes from the
anisotropic lookup table. See the kernel walker section for
more information on how these scalefactors are derived.

Trilinear filtering can optionally be turned on with either
bilinear or anisotropic filtering. When this mode is enabled,
the complete filtering operation is done first on one mipmap,
then the other. As a result, trilinear-filtered pixels will iterate
in the filter for twice the time, and the scalefactors are still
always set such that the total of all contributions sum to one.

10

15

20

25

30

35

40

45

50

55

60

65

40
FIG. 84 is a block diagram of the filter unit 8400. The
filter unit is made up of a control unit 8402, and 4 pixel
filters. Each pixel filter has a chromakey unit 8404 and four
color filters, one for each RGBA color channel. Each color
filter has a bilinear blender, a scale multiplier 8406, an
accumulator 8408, and a clamp/invert unit 8410.

In general the operation of the filter is relatively straight-
forward. Several filtering modes are provided: point-
sampling, bilinear filtering, and trilinear filtering. In addition
the bilinear and trilinear filtering can be anisotropic, requir-
ing scaling and accumulation of a number of bilinear-filtered
neighborhoods. In all cases the core filter unit of operation
is the bilinear filter. If point-sampling is enabled, units
upstream of the filter set the bilinear weights appropriately
so that one texel value is passed through by the normal
operation of the bilinear filter. In this case the incoming scale
would be set to 1.0, as it would in pure bilinear filtering. For
anisotropic or trilinear filtering, the bilinear results of two or
more neighborhoods could be scaled and accumulated to
produce the final filtered result. Upstream units control the
behavior of the accumulator, control the filter’s assertion of
valid, and ensure that the sum of the scalefactor weights of
all component neighborhoods adds up to 1.0.

The control module operates the selects in the data
pipeline. It receives a scale (tc__scale[8:0]) input which gets
piped to the scaling multiplier and receives two state bits
from the kernel walker (tc_ pstate ker2flt[1:0]) to control
the data pipeline. One bit is used to generate the load
accum and hold__accum signals to the accumulator. Another
is used to tell the filter when to assert flt_ valid. In addition
the control block pipes through variables from TC that are
needed downstream in the combine unit. These include
Ims2tcu (either LMSfrac, detail factor or texel area) and
miscellaneous pixel state data. The control block also is
responsible for controlling the data flow through the pipeline
based on the DVS interface.

The Chromakey unit compares the incoming texels
against a reference value, derived from either a set of
constant registers (taTexChromaKey and
taTexChromaRange). There are three modes in which chro-
makey operates, Traditional Chroma, Chroma-replace, and
percentage-passed. The inputs to each chroma unit are four
texels, plus the S and T fraction bits (actually 0.0 to 1.0),
plus a per-texel valid bit (four total). The valid bits are
usually true, except where there’s no valid texel (during
texture clamping, a possible edge case in mirroring, and
point sampling).

For each texel the chroma unit compares the texel value
against the reference chroma values and determines whether
the texel is chromaed out. A new texel valid is generated:
newTexelValid=TexelValidln &~TexelChromaed . At the
end of the first chroma stage, there’s four texel values, and
four newTexel Valids.

In traditional Chroma mode, a texel that passes chroma is
replaced with tranparent black. In this mode, with Anti-
aliasing and screen door transparency, the most accurate
chroma-key output is achieved. In the VTA this is a range
check, with the low range set by taTexChromaKey values
and the high range set by taTexChromaRange values. An
exact check can be accomplished by setting both registers to
have the same value.

In chroma replace mode, the passing pixel is replaced
with alpha=0 and the color equal to the color of one of the
samples. A simple replacement algorithm is used. If a texel
is invalid, its alpha is always set to zero. For each pair of
horizontal texels, if both texels are valid or both texels are

US 6,778,181 B1

41

invalid, then texel colors don’t change. If one texel is valid
and the other invalid, both texels are given the value of the
valid one. For vertical replacement, if one set of horizontal
texels are BOTH invalid, then the colors are replaced by the
texel values from the other set. Finally, if all texels are
invalid, then no texel values are replaced.

This can all be implemented by playing with the S and T
fraction bits, As shown by the following table. Here
texel Valids[3:0] correspond to {texel3,texel2,texell, texel0},

respectively. Or {LR,LL,UR,UL}.
TABLE 13
TexelValids Shigh Slow T

0000 SIn Sin Tin // No Texels valid
0001 0.0 Sin 0.0 // Upper Left only
0010 1.0 Sin 0.0 // Upper Right Only
0011 Sin Sin 0.0 // Top Only
0100 Sin 0.0 1.0 // Lower Left contributes all
0101 0.0 0.0 Tin // Left only
0110 1.0 0.0 Tin // First diagonal
0111 Sin 0.0 Tin // Only Lower Right Chroma’ed out
1000 Sin 1.0 1.0 // Lower right contributes all
1001 0.0 1.0 Tin // Second Diagonal
1010 1.0 1.0 Tin // Right Only
1011 Sin 1.0 Tin // Only Lower left chroma’ed out
1100 Sin Sin 1.0 // Lower Two contribute all
1101 0.0 Sin Tin // Only Upper right Chroma’ed out
1110 1.0 Sin Tin // Only Upper left chroma’ed out
1111 Sin Sin Tin // All texels valid. Act like nothing’s

happened.

Note that there are two S fraction variables, one for each
horizontal pair. Also, Shigh Slow, and T only affect the RGB
interpolators, Alpha interpolates normally.

A 2x2 percentage passed filter is generated by taking each
incoming texel and comparing it against the reference value.
A 1-bit pass/fail for each input is generated, resulting in
values of 0x00 or Oxff for each channel. To be consistent
with the normal chroma modes, a choma match (fail) will set
the texel value to 0x00, or transparent black. This value is
then simply output to the bilinear interpolators, which then
perform the standard percentage-passed filter.

An embodiment takes advantage of the fact that the
equation can also be written as follows: result=w*B+(1-w)
*A. This can be implemented with little more than the logic
needed for a single 8x8 multiplier. Since (1-w) can be
represented as a bit inversion of w+0x00, the sum of the
above two products can be generated by summing A plus
eight partial products, where each partial product is a shifted
version of A or B, based on each fractional bit of w. Since
the partial products are a muxed A or B term, this logic is
sometimes called a muxlerp. The 9 partial products are
summed with a CSA tree 8500, as shown in FIG. 85. As an
example, consider a weight of 0xB7. In this example the
final output is the upper 8 Z bits.

FIG. 86 depicts a model 8600 for color substitution. Four
bilinear texels (A,B,C, D) are shown in FIG. 86. The gray
regions indicate a chroma color or chroma range match for
that texel. The S and T sampling quadrant and color substi-
tution function is indicated for each case of the twelve cases
shown. The substitution function is rotationally indepen-
dent. For example, if only B were chroma-matched instead
of A and the sampling point were on B then the substitution
function would be B=(2A+2D)/4.

The first row 8602 illustrates the four sampling quadrant
cases where one of four bilinear texels matches chroma (in
this case texel A). Basically two different functions on texel
data are applied to determine the substitution color for A.

10

15

20

25

30

35

40

45

50

55

60

65

42

The next row 8604 shows the four sampling quadrant cases
of two diagonal texel colors matching chroma. Again, two
different functions are applied to determine the substitution
colors for the two keyed out texels (A and D).

The third row 8606 shows the four remaining cases. Of
these remaining cases, only the case where all texels are
keyed out (second from right) is slightly tricky. For this case
the alpha values are set to zero. But, to preserve the color of
the keyed texel as a chroma match, the point sampled color
from the S and T sampling coordinate is replicated to the
other three texels. The bilinear blend unit thus produces the
equivalent of a point sampled color for that pixel. Note that
if color substitution is turned off the resulting pixel color is
black with alpha equal to zero.

Two factors determine what the chroma module does with
chroma match information and the substitution colors: (1)
whether or not color substitution is enabled, and (2) if
bilinear blending is turned on for the color channels.

If color substitution is turned off, the color substitution
calculation is ignored and the output of a chroma key match
is transparent black. This applies to both point sampled and
bilinear texels.

If color substitution is turned on, and the texture mode is
point sampled RGB, then a chroma match results in an alpha
of zero for the matched texel, and the point sampled color
passes through the chroma module unmodified. For bilinear
chroma color substitution, the substitution function gener-
ates the colors for chroma-keyed out samples.

FIG. 87 is a table 8700 that shows all the combinations of
color substitution, bilinear RGB, and bilinear alpha. The
column labeled “require all 4 texels” indicates that all four
texels are required even if the S and T coordinates are
exactly centered on a texel row or column. The memory
controller and texel cache is optimized to not bother with the
zero bilinear contribution row or column texels. However,
since the chroma module uses adjacent colors to reconstruct
a substitution color, this memory fetch optimization needs to
be overridden sometimes. The override to force fetching of
all four texels can occur when bilinear RGB blending is
enabled. Note that bilinear alpha alone does not indicate the
need for all four texels to be fetched.

The structure of a chroma key module (or “unit”) 8404 is
shown in FIG. 88. The chroma key matches are determined
first, based on incoming texel colors and the values set in the
chromakey and chromarange registers. Once the chroma-
matches are determined and collected into a mask value, 16
control switches are computed by the mux_ ctl function.
These mux controls are used to generate the substitution
function to be executed by an 8 bit four-way adder. Based on
the encolorsubstitution bit and the bilinear rgb bit passed in
from upstream, the final texel color for each of the four
texels is determined.

The chroma test function (ck__test) 8802 tests an incom-
ing color against the chroma match criteria set forth in the
chromakey and chromarange registers. The combined
results of chroma testing the four incoming texel colors form
a mask with bits set to indicate a chroma match. The ck_ ctl
module 8804 generates a set of mux controls that feed into
the ck_alu funtion 8806. This function computes substitu-
tion the color(s). The final output color is determined by the
ck_texel module 8808 which selects among (1) generated
colors (chroma and colorsubstitute enabled), (2) original
colors (as is the case of chroma being disabled), and (3)
black (chroma enabled and colorsubstitute off).

The ck_test module is responsible for generating the
mask value which indicates if a color matches chroma. As

US 6,778,181 B1

43

part of this task, ck_test observes the S and T weights
(w_sl and w__t1 as well as the 1-n signals) and determine
which quadrant the sample point is in. This information is
conveyed through the w_s_ 1t half and w_t It half sig-
nals. Observing the S and T weights is preferred at this step
because the ck_ test function preferably is able to compute
a special chroma mask value under certain conditions: (1) S
is clamped to 0 or S is clamped to 1, (2) T is clamped to 0
or T is clamped to 1, or (3) all 4 texels match chroma and
bilinear RGB is enabled. Both (1) and (2) can occur together.
And (3) can occur independent of (1) and (2). The S and T
weights communicate a “clamped to 0” or “clamped to 1”
condition by overloading the weight value, as shown in the
following table.

TABLE 14

Weight code Description

0.00000000-1.00000000
1.10xxxxxXX
1.11xxxxxx%

Weight value of 0, clamped to 0
Weight value of 1, clamped to 1

When clamping occurs on S or T the texels on the inside
clamped edge of the map need to be mirrored. FIGS. 89 and
90 illustrate this for S clamping at 1 and S clamping at 0. The
four sample alignment is assumed even (one_minus flag
de-asserted) when clamping is asserted in that dimension.

FIG. 89 depict a model 8900 for clamping at 1. FIG. 90
depicts a model 9000 for clamping at 0. Color mirroring
about the clamp axis is accomplished indirectly through
manipulation of the chroma mask bits generated by the
ck_test function. The color substitution function for the two
cases shown in FIGS. 89 and 90 is a horizontal copy of the
non-chroma colors. This has the same post-bilinear effect as
mirroring the texel color inside the map boundaries.

Note that, while the mirrored texel color does not con-
tribute to the post-bilinear color, it is essential to not allow
a mathematically irrelevant color into the raw color substi-
tute function. By coercing the chroma mask, the correct
post-bilinear result is achieved without having to pre-copy
the incoming color data (the ck_test) when clamping is
asserted. Note also that the color substitution values gener-
ated for the zero contribution texels are merely a byproduct
of generating the 1.0 contribution texels.

FIG. 91 illustrates a model 9100 for clamping according
to another embodiment. In FIG. 91, assume S is clamped to
1, and color D matches chroma. The chroma mask bits
would be set to show A, C, and D as matching chroma, thus
yielding the correct post-bilinear result, of B bilinear
blended with the color substituted value for D (which should
be B in this case). With the chroma mask coerced to show
A, B, and D matching, the color substitution for D yields B,
the correct result. Symmetry can be used to show this works
for all rotations of a single chroma match and clamp edge.

FIG. 92 illustrates a model 9200 for clamping according
to yet another embodiment. If clamping occurs in both S and
T dimensions, as shown in FIG. 92, the correct post-bilinear
result is achieved through coercing the chroma mask to
show A, C, and D as chroma matches. The arrows indicate
B is copied to the other texels.

Texture maps (or LOD levels) that are 1 color wide are
always clamped to 0.0 in the S dimension. Texture maps that
are 1 color tall are always clamped to 0.0 in the T dimension.

Other special cases may need to be handled occur when
all four texels match chroma. When this happens, the desired
result is to preserve what would have been the point sampled

10

15

20

25

30

35

40

45

50

55

60

65

44

color. To achieve this, the mask is coerced to indicate a
non-chroma match on the point sampled texel, and matches
on the remaining three. This causes all four texels going to
the bilinear blend unit to assume the point sampled color.
Setting all four texels to the same color may be necessary
because the bilinear blender may or may not rely on weight
clamping to achieve point sampling in some cases. All four
alpha values are set to zero.

If clamping is asserted, the clamp values are used to
uniquely determine which texel should be used for the point
sampled color. For example, if S is clamped to 1.0, then
either B or D is the point sampled color; if T is asserted then
the choice is uniquely determined. If T clamping is not
asserted, the bilinear blend’s T weight is examined to
determine if B or D is to be preserved (and copied to the
other three).

The bilinear blenders are made up of three linear inter-
polators (LERPs). A linear interpolation is done on the upper
left and upper right texels according to a horizontal weight,
and similarly on the lower left and lower right texels
according to a horizontal weight. Then the results of these
are interpolated based on a vertical weight. The equation
used for each of the lerps for interpolating between A and B
with a weight w is as follows: result=A+w*(b-a), where
weight is a fractional 8-bit range between zero and one. A
nine-bit weight is sent to each LERP such that valid weights
range between 0x000-0x100. Weights at either extreme
represent passing out A or B, and weight 0x001-0x0ff
represent a linear interpolation between A and B.

FIG. 93 is a detailed diagram of the multiplexer 8406 and
accumulator 8408. The Mult is an 8x8 mult, outputting 16
bits. Its inputs are the incoming scalefactor, the incoming
bilinear blended texture color, and valid bits indicating the
status of the blended texels. The accumulator is 17 bits to
handle overflow. They are used to scale each bilinearly
interpolated output and sum them together, performing the
intermediate stages of the anisotropic filter, and performing
the scaling and summing of neighborhoods when trilinear is
enabled. The control for the accumulator is based on the
ker2flt inputs. Setting both hold__accum and load__accum at
reset will zero the output. Hold accum will be set for
invalid packets to hold accumulator values until the next
valid token comes down the pipe.

The final stage of the filter extracts the upper 9 bits from
the accumulator, and clamps this to 0-255. The data is then
sent onward to the combine unit. There is no need to invert
the output, since the input of the combine unit is program-
mable with a full (1.0-x) functionality. The filter’s output is
clamped to a range 0x00 to OxFF. Bits in the tcu control
registers describe how to convert this value to the overbright
s.4.8 format which is used in the combine unit.

Combine Unit (COM) 804 (see FIG. 8)

The VTA Combine Unit includes Texture and Color
Combine Units. The VTA solution provides compatibility
for all texturing capability exposed within the DirectX,
OpenGL and Glide APIs. In addition, unique features are
added for the support of the OpenGL lighting, difference
multiplexing, over-bright lighting, light-map distance
attenuation, shadow-map attenuation, matrix transforma-
tions and ARGB dot products.

Features of the Combine Unit 9400 are divided between
the Color Combine Unit (CCU) 9402, the Texture Combine
Unit (TCU) 9404 and the Combine Data Register (CDR)
9406. FIG. 94 shows an overview of this organization within
the VTA. FIG. 95 illustrates the Texture and Color Per-Pixel

US 6,778,181 B1

45
Combine Units 9402, 9400. As shown, each of the Texture
and Color Combine Units incorporate 4 sets 9500, 9502,
9504, 9506 of pixel processing units consisting of ARGB
arithmetic processing units and the Combine Data Register
provides a single level of texture data storage.

The Combine Unit ARGB arithmetic units perform “(a+
b)*c+d or (a<b)?c:d” math on inputs selected from filtered
texture values, iterated colors, previous combine results,
registered combine results and programmable constants.
Inputs for the arithmetic function may be independently
selected for color and alpha slices and independently
manipulated through “1-x" input formatting blocks. Once
formatted, the arithmetic operations of each of the pipeline
slices are performed in over-bright format (1.4.8) with
non-over-bright clamp and shift options.

The Texture Combine Unit (TCU) combines data from the
current filtered texture, the previous combine unit output, the
registered combine unit output, the current evaluated (i.c.
iterated) color, the current evaluated (i.e. iterated) alpha, a
constant color or a constant alpha value. Inputs from the
filter may be optionally shifted left O to 3 bits for over-bright
evaluation. And, additional inputs from the LMS unit pro-
vide arithmetic access to LOD fraction, detail factor, or texel
area.

The Color Combine Unit (CCU) combines data from the
current TCU output, the current filtered texture, a previous
combine unit output, a registered combine unit output, an
evaluated (i.e. iterated) color, an evaluated (i.e. iterated)
alpha, a constant color or a constant alpha value. Additional
functionality provides a Chroma-key check which allows
pixels matching a chroma value to be invalidated before
writing the frame buffer.

Further CCU functionality provides output formatting to
provide for a final “1-x” data-munge, a left-right shift of 0
to 4 positions and an optional clamp to non-over-bright. The
“1-x" option provides for legacy support and new options
for data headed for recursion or the pixel engine. Similarly,
the left-right-shift option provides for d3d base-2 multiply,
general base-2 division and mechanism for over-bright data
conversion.

The Combine Data Register (CDR) provides a mechanism
for storing and re-using texture data from one VTA texture
pass to another. This feature allows for the non-immediate
use of a feedback texture as well as the re-use of a feedback
texture.

The texture and color combine units are composed per-
pixel R, G, B and A units. Alpha channel units select inputs
from a variety of alpha sources and the color channel units
select inputs from a variety of color and alpha sources. The
input selection options are shared for the R, G and B
channels and independently controlled for the A channels.

RGBA iterators generate 25-bit values yielding 13 MSBs
of pixel data and 12 L.SBs for error accumulation across the
(x,y) screen range. The 13-bit iterator pixel data is forwarded
to the combine unit inputs as an over-bright color in s.4.8
format.

Each input to the “(a+b)*c+d” math is sent through a
“1-x” function. This function provides the following for-
matting options for each a, b, ¢ and d input.

TABLE 15

Mode[1:0] = 00: output = input
Mode[1:0] = 01: output = —input (for 2s complement
negate)

10

15

20

25

30

35

40

45

50

55

60

65

46

TABLE 15-continued

Mode[1:0] = 10: output = input — 0.5 (for bias to d3d
1.0 to -1.0 range)

Mode[1:0] = 11: output = 1.0 - input (for flip around
0.5)

A min-max function provides for an alternative evaluation
of “(a+b)*c+d” to create “(a<b)?c:d”. Each combine unit can
also optionally perform a min-max function. In this mode,
the output is determined by a magnitude comparison of the
terms selected for a and b. The output in this mode evaluates
to either input ¢ or d.

A RGB adder is included to provide the TCU sum of
R+G+B as an input to the a, b, ¢ and d muxs of the CCU.
This additional input provides for dot product arithmetic
within the CCU.

The output of the TCU has the option of being clamped
to 1.0 for compatibility with legacy systems and outputs
from the CCU have options for “1-x” formatting (same as
above), a 4 bit left or right shift and a clamp to 1.0. The
precision throughout the Combine Unit pipeline is [-16.0,
15.999] overbright while the 1.0 clamp options allows for a
[0,1.0] legacy compatibility mode.

Multi-texturing support is accomplished through dispatch
alignment from the head of the Combine Unit to the base of
the Combine Unit. Once the output is computed in the TCU
and CCU, subsequent texture iterations can cause the result
to get sent back for additional combine operations. The VTA
dispatcher sends packets sized to match the latency of the
combine unit pipeline. The combine unit performs bubble
collapsing of invalid data such that valid data gradually fills
every stage of the combine pipe. Once the entire pipe is full,
the next valid data will come from the next texture iteration,
and the combine unit achieves data re-circulation. This
process continues until the final texture iteration (iteration
zero) has completed, at which point the resulting pixels are
sent to the pixel engine (PE).

FIGS. 96-99 show block diagrams of color and alpha
slices of the TCU and CCU. More particularly, FIG. 96
illustrates the color path 9600 (for each RGB) of the TCU.
FIG. 97 depicts an alpha path 9700 of the TCU. FIG. 98
shows a color path 9800 (for each RGB) of the CCU. FIG.
99 illustrates an alpha path 9900 of the CCU. The inputs to
the color channels and the alpha channel are all indepen-
dently selectable. LFB data is muxed in with evaluated (i.e.
iterated) color data, since LFB operations and 3D operations
are mutually exclusive.

FIG. 100 illustrates a method 10000 for texture lighting,
in accordance with one embodiment. It should be noted that
the present method 10000 may be carried out in the context
of the TCU of FIG. 96 or in any other desired context.
Initially, in operation 10002, a pixel is determined within a
primitive that is to be texture mapped.

Next, in operation 10004, texture coordinates associated
with the pixel are identified along with a plurality of sets of
light values corresponding to vertices of the primitive. As an
option, each set of light values may include an r-value,
g-value, b-value and a-value. Still yet, the sets of light values
may include a set of diffuse light values or a set of specular
light values.

Texture information is then retrieved in operation 10006
utilizing the texture coordinates. A plurality of interpolated
light values is then calculated utilizing the sets of light
values and texture coordinates. See operation 10008. As an

US 6,778,181 B1

47

option, the interpolated light values may form a dot product
with the texture information. Such interpolated light values
are then multiplied with the texture information, as set forth
in operation 10010.

As an option, at least eight sets of lighting values are
utilized for increasing the accuracy of the manner in which
the texture information is lighted. Further, each light value
may have a range that is capable of exceeding (1) for
increasing the accuracy of the manner in which the texture
information is lighted. Still yet, each light value my have a
range between (-8) and (8).

More information will now be set forth regarding the TCU
of FIG. 96 with which the foregoing method may be carried
out.

LMS2TCU of the TCU can be either the LMS_ frac,
Detail _Factor, or TexelArea. LMS2TCU is generated in the
LMS circuit, and sent through the pipe to the Combine unit.
Since the texel area is a float, the LMS circuit needs to scale
it down to a useable range. A proposed way of doing this is
to pass the exponent of the texel-area downstream, option-
ally adding it to the software-set exponents of the incoming
textures, along with the exponent of the evaluated (i.e.
iterated) color. The output of the CCU is then shifted left by
this amount and clamped. Another method is to add the
exponents of the inputs to the TCU, and then use this to
select less significant bits from the output of the TCU
multiplier, clamping if upper bits are set.

The multiply or ¢ input of the TCU can have its (1.0-x)
function polarity inverted by an incoming signal that indi-
cates LMS mipmap level for the even/odd TREX. This
supports “old trilinear” modes of legacy systems. Since this
mode is legacy, operation of “old trilinear” can be defined
only for certain cases if desired. If the “old trilinear” bit is
set, software can set the multiplier mode to be either 00 or
11 to perform either a nop or the full (1.0-x). When the
mipmap level indicates it, the polarity of the (1.0-x) func-
tion will be inverted. This is equivalent to the old behavior
of performing an xor of reverseblend and LODB[0].

According to one embodiment, non-overbright clamping
can be performed by optionally clamping data to the range
0 to 1.0. Otherwise the full overbright range can be used
(16 to 15.99). The clamping is controllable in the TCU and
CCU outputs.

The “a” term of the CCU can be used to perform a chroma
key or alphamask check, and optionally zero used as the add
term instead of “a”.

VIDDEYV uses tcu—ccu—tcu—>ccu for multiple passes.
The chromakey and alphamask check can be performed
multiple times for various iterations. Since uses can be
envisioned for extending this functionality, one embodiment
can support such testing in multiple passes. chroma/alpha
checks can be independently enabled or disabled for each
pass, and the results from valid fails are OR’d together for
the final result. PE will then determine whether to invalidate
or not based on these masks. Overbright colors greater than
OxFF are clamped to OxFF for purposes of chroma compari-
sons.

Compatibility can be programmed in software by setting
up evaluated (i.e. iterated) alpha to perform the computa-
tions of evaluated (i.e. iterated) Z in an additional VTA pass
if desired.

LMSfrac, detail factor, and Texel area can be muxed as
LMS2TCU. Compatibility with legacy systems can be main-
tained by forcing software to set up multiple VTA passes to
get this functionality. Only one LMS2TCU value is piped
downstream from LMS.

10

15

20

25

30

35

40

45

50

55

60

65

48

For the b, ¢, and d terms, it is possible to override the
software select of c¢_local (c_iter or color0) with the
Atex[7] bit. According to one embodiment, one local select
mux whose output was sent to the subtract, multiply, and
final adder. If c_ local was selected for any of these terms,
the override selection would be used. Preferably, this is
implemented as using the Atex[7] bit to select between Citer
and CO. This dynamically changing value can be used at the
b, ¢, or d inputs by selecting Citer when the override is
enabled.

The 1.4.8 output of the color combine unit can also be
routed to the Zbias register, allowing a texture to be used to
modify the Z/Fog value.

The combine unit can be programmed to perform dot
products, matrix multiplications, in addition to the functions
described above. FIGS. 101-103 demonstrate how more
complex math functions can be programmed using the
general selectability of the combine unit inputs, in particular,
a four term dot product 10100, a three term dot product
10200, and a 2x3 matrix multiply 10300.

Accumulator (ACC) 824 (see FIG. 8)

FIG. 104 illustrates the accumulator 824. The accumula-
tor can add together multiple combine unit outputs per
texture. Since it takes up to N clocks for data to feed through
the Combine unit, the accumulator needs to keep track of N
partial values.

The output of the CCU can be either loaded into the
accumulator, added to the current accumulator value, and
optionally right-shifted to perform a rough average function.

The output to the accumulator FIFO can be in an s.7.8
format to account for 8 potential accumulates, and the output
to PE/recursion FIFO/prev iteration feedback is clamped
back down to the s.4.8 overbright range before being output.

The table below describes the accumulator behavior based
on the ACC_LOAD and ACC__ADD bits from the taCcu-
Color register.

TABLE 16
ACC_LOAD ACC_ADD Output ACC holds
0 0 CCU output Previously loaded
value (undefined if
no prior load)
0 1 CCU output + Previously loaded
Accum value (undefined if
no prior load)
1 0 CCU output CCU output
1 1 CCU output + CCU output + Accum
Accum (undefined if no
prior load)
Iterators

The triangle iterators in the VTA are responsible for
delivering iterated parameter data to the pipeline based on
the stepping instructions from the raster unit and setup
information from the setup unit. A top-level block diagram
of an iterator 10500 is shown in FIG. 105. All the iterators
in the VTA use basically the same structure, differing only
on the precision and bit-width of the specific parameter
being iterated. As shown, the iterator includes a triangle state
array 10502, an iteration state array 10504, parameter itera-
tors 10506, a quad neighborhood generation logic 10508,
and an AA coverage mask correction block 10510. These
will be described in more detail below.

The iteration of parameters is made more challenging in
the VTA due to the large volume of state information that is

US 6,778,181 B1

49

preserved. At any given time, a large number of triangles can
exist at various points in the VTA pipeline, and up to 8 or
more different texture iterations can be applied to each
triangle. The VTA iterators provide a smooth transition from
triangle to triangle and iteration to iteration without stalling.
In order to accomplish this, triangle state rams and iteration
state rams hold data from a range of triangles and a range of
iterations, and as needed, data is extracted from these rams
into pending state registers in the iterative walker. The
walker bases its computations either on its local accumulate
registers or will pull data from these pending registers. In
this way, no cycles are lost when switching triangles or
switching iterations.

The VTA iterators iterate on the upper left pixel in each
quad, these values are later expanded out into all four pixel
values by the neighborhood generation unit. At this point,
the RGBAZ iterators need to perform corrections for the AA
coverage mask if the center mask bit is not valid. After the
AA correction, pixel data is sent to the VTA pipeline. All of
this is accomplished by utilizing RAMs and circular FIFOs
to save and restore pending state information to the iterators.
To simplify top-level interfaces, the XYZQ parameters are
iterated in the VTA and are valid only for iteration zero. The
XYQ parameters are unused in the VTA and the iterators
output the upper left pixel value and delta terms to the PE,
which is responsible for neighborhood generation and sub-
sample correction. The Z iterator output is used in the VTA,
but its output is also only valid for iteration zero. However,
AA correction is still done before its use in the COM unit.
The interface to PE is similar to XYQ, with iterated UL pixel
and delta values sent to PE, which uses the coverage mask
to compute subsample depths on its own.

The iterator widths in the VTA are as follows:

TABLE 17
Parameter Width (format)
XY 22 bits (11 bits each)
STW 51 bits (8.43 or 16.173)
RGBA 25 bits (1.4.20)
zZ 36 bits (1.173 or 9.27)
Q 36 bits (1.173)

FIG. 106 depicts the triangle state FIFO 10502. The
triangle state FIFO stores the start and delta values from the
setup unit until they are ready to be used as the triangle is
processed downstream in the VTA. The triangle state FIFO
holds all the start and delta values for a triangle until
iteration zero has been processed. Until then, the FIFO is
used as storage for the start and delta values, and the state
ram is read appropriately to restore pending delta values for
the walkers as they switch iteration state or triangle state.
The start, deltaX, and deltaY values are read in three
successive clocks to fill or reload the pending tstate registers
in the walker.

The writing of the triangle state FIFO is fairly
straightforward, as the setup unit fills N iterations worth of
start, deltaX, and deltaY values for each parameter and each
triangle. Iterations are written highest to lowest, to match the
order of their use within the VTA. The Z, Q, and XY iterators
need only concern themselves with iteration zero, and these
iterators simply stall during nonzero texture iterations. The
STWARGSRB iterators, however, can support up to 8 or more
potential iterations of data for each triangle.

There are two cases to be aware of regarding the write
pointer. The first regards the fact that parameter data arrives
from the setup unit in two cycles. However, it takes three

10

15

20

25

30

35

40

45

50

55

60

65

50

cycles to write the start, deltaX, and deltaY values into the
ram array. As a result, if the setup unit sends back to back
packets for the same parameter (an unlikely but possible
case), the iterators need to stall the setup interface. The
second unusual case regards the Wbroadcast (Wb) capability
of the setup unit. Each triangle’s parameter setup begins
with a special combination XY and Wb packet. The Wb
packet’s data can be used for any iteration of W (Qtmu) or
Qpe if explicit parameter data was not otherwise sent. As a
result, the Wb data may be set aside and could potentially be
needed to initialize parameter state behind the scenes. All
other parameters are written only when explicitly selected.

The following table lists several write pointer rules.

TABLE 18

1. Write pointer resets to zero, the original base of the triangle state
FIFO.

2. If valid parameter data is sent, write data in 3 cycles, bumping write
pointer by one each clock.

3. If no valid parameter sent for triangle or iteration, bump write pointer
by three

4. Special case for Qpe and W(Qtmu): If no valid parameter received,
update with Wb data, adjusting pointer as in case (2).

Control for the read pointers is a bit more complex. The
basic idea is to have two sets of pointers, active pointers and
pending pointers, which will control the reading of the
triangle state rams. The active pointers locate the position of
the start and delta values for active triangles, and the
pending pointers precompute the next location of the active
pointers. Thus, when a newtri signal is encountered, the
active pointers are updated to the pending locations, and new
locations for the pending pointers are computed. Thus, the
pending pointer movement is where much of the complexity
lies. The motion of the active and pending triangle state ram
read pointers obeys the rules set forth in the following tables.
Table 19 lists active read pointer rules, while Table 20 lists
pending read pointer rules.

TABLE 19

1. All active pointers reset to zero, the original base of the triangle state
FIFO.

2. At newtri, any iteration’s active rd pointer greater than or equal to the
current iteration number’s active rd pointer gets its pending pointer if
both active and pending registers match the values in the current
iteration’s active and pending pointers.

TABLE 20

1. All pending pointers reset to zero, the original base of the triangle
state FIFO.

2. At newtri, any iteration’s pending rd pointer less than the current
iteration number’s pending pointer is bumped by three (one iteration’s
start and delta data) if its pending register matches the current
iteration’s pending pointer.

3. At newtri, any iteration rd pointer greater than or equal to the current
iteration’s pending rd pointer is bumped by whichever is smaller,
three times the total iteration count for that triangle, or the distance to
the pending pointer for iteration 7. (Pending pointer for a lowered
numbered iteration can never pass a higher numbered iteration’s
pending pointer)

The final resting state of this read pointer labyrinth will be
such that the active pointers point at the respective iterations
of the final triangle, and all pending pointers are equal. At
this point as the dispatcher spins through iterations of a
potentially huge triangle, the pointers are set up to pull out
and restore the correct delta information for the walkers. If

US 6,778,181 B1

51

no more triangles are stored in the state FIFO ram, this will
also match the write pointer where subsequent data will be
written.

In any event, this should be the state when iteration zero
is completed, since all iterations are guaranteed by the
dispatcher to have the same sequence of newtris and raster
steps. This is also guaranteed to be occurring when the
iteration state sequence changes, as the dispatcher will
complete the previous iteration state down to iteration zero.
Therefore, whenever this point is reached (all pending
pointers are equal), the iteration number where the next
newtri occurs matches the total iteration count of the next
dispatch bundle sequence. This is how the iterators keep
track of the total iteration count of the triangles indexed in
the triangle state FIFO.

FIG. 107 depicts the iteration state array 10504 and
parameter iterators according to one embodiment. Like the
triangle state array, the iteration state array stores the current
state of the walkers, as it is saved and restored due to
changes in iteration packets. The state values that need to be
stored are the accumulator value, a push value for the
serpentine walk, and left/right push values for the column§8
rasterization paradigm. The iteration state array stores 8
copies of these parameters, one for each possible texture
iteration. The deltaX and delta’Y values also need to be saved
and restored, but since these are already contained in the
triangle state FIFO, they are restored through clever control
of the triangle state read pointers rather than storing these
values again in the iteration state array.

Iteration changes trigger reads and writes to the iteration
state array, as the four state values are saved and restored
over a period of four clocks. This restoration, together with
the three cycle read from the tstate FIFO, is currently what
limits the dispatcher to submitting new triangles no closer
than four clocks from a prior or subsequent new triangle or
iteration change. New triangles can of course be coincident
with a new iteration. The iteration state array applies only to
STWARGRB parameters, as the others only iterate in iteration
Zero.

The parameter iterators (or walkers) are the units which
actually do the iteration based on the sequence of steps,
pushes, and pops received from the raster unit. The source
of the iterative computation either comes from a bank of
pending registers preloaded from the triangle and iteration
state arrays, or local accumulator registers. This allows the
triangle walkers to never stall when switching triangles or
switching iterations.

The parameter walkers step according to shifted delta
terms, since they need to move +/- twice dx and dy. This is
due to the fact that the upper left pixel of the quad is being
iterated, so the steps occur in terms of units of 2 x locations
or 2 y locations. The iterated upper left pixel is then sent
onward to the neighborhood generation unit, where the quad
is expanded.

Another note regards stalling. The walkers and down-
stream units (quad generation and AA mask correction) are
stallable independent of the tstate and istate updates of the
pending registers. One reason this is the case is for void
quads. Voids can not be allowed to iterate, but voids also do
not want to get in the way of the four cycle restriction
between newtris and iteration boundaries. In other words,
voids need to stall the blocks downstream of the walker, but
not stall the triangle state FIFO or iteration state FIFO.

FIG. 108 illustrates the quad neighborhood generation
logic 10508. Using the delta values and iterated upper left
pixel for a given iteration, this block expands the quad,

10

15

20

25

30

40

45

50

55

60

65

52

generating values for all four pixels. Qpe and XY iterators
do not need to expand the neighborhood, as this will be done
within the PE.

FIG. 109 depicts the coverage mask correction block
10510. The AA coverage mask correction block is required
only for iterators that feed the combine unit (ZARGB). This
function is not performed for STW or Qpe. The correction
for STW is not needed, and the correction for Qpe will
happen in the PE.

This logic adjusts parameter values on a subpixel level
when the center iterated value is invalid according to the
coverage mask, but one or more of the adjacent subsamples
are valid. As shown in FIG. 109, the adjustment relies on the
fact that subsamples 0 and 3 are colinear with the center, as
are subsamples 1 and 2. This means that if subsample 0 and
3 are both valid, the center is also valid. Likewise for
subsamples 1 and 2. This makes it possible to simply choose
the course of action with something resembling a priority
encoder.

Therefore, the logical correction can be summarized as
follows:

TABLE 21

If all subsamples invalid or center is valid, do nothing.
Else if subsample zero is valid, adjust to subsample zero.
Else if subsample three is valid, adjust to subsample three.
Else if subsample one is valid, adjust to subsample one.
Else if subsample two is valid, adjust to subsample two.

S S

Linear Frame Buffer Writes

The Linear Frame Buffer writes, processed by the Linear
Frame Buffer (LFB) Unit 11000 of the VTA, are received
from the Command Front End (CE) at the side-band and
transported to the Pixel Engine (PE) from the Combine Unit
(COM). State at the side-band determines the LFB transac-
tion mode to a XY based addresses. FIG. 110 diagrams the
weave of LFB transaction into the pixel pipeline of the VTA
Combine Unit. Elements of the LFB Unit include a byte
swizzle unit 11002, a word swap unit 11004, a color lane unit
11006, and a color format unit 11008. These will be
described in more detail below.

A signal generated by the LFB Unit sets the ARGB
iterators into a LFB override mode. This signal is set for all
valid LFB transfers. When set, the ARGB iterators pass LFB
data to the Combine Unit and the LFB Unit passes XYZQ
LFB data to the PE.

Another signal generated by the LFB Unit sets the Com-
bine Unit into a LFB bypass mode. This signal is set for XY
address based LFBs which do not enable the pixel pipeline.
When set, the Combine Unit forces iterator color selection
and an null math function.

The LFB Write function provides for XY address based
LFBs processed by the combined state of the LFB mode
register and the VTA Combine Unit. Linear frame buffer
writes are managed by the LFB Unit. The LFB Unit includes
functional blocks providing byte-swizzling, word-swapping,
color-lane-muxing, color-formatting and data piping. The
following sections describe the major functional units of the
LFB Unit and their requirements for the generation of data,
address and control.

The LFB Mode Register, sampled off of the side-band,
controls the 3D processing of XY address based LFBs. FIG.
111 is a chart 11100 that describes each of the control bits of
the LFB mode register.

US 6,778,181 B1

53

FIG. 112 is a table 11200 that decodes VIDDEV__LFB__
FORMAT of the LFB Mode register.

FIG. 113 is a chart 11300 listing the control bits of the
LFB Depth Constant Register. The LFB Depth Constant
Register sampled off of the side-band, defines 16 bits of data
used for the generation of depth of XY based LFBs. This
register is used when a LFB format lacks definition depth.

The LFB Byte-Swizzle Unit modifies bytes of data
received from the CE and delivered to the LFB Word-Swap
Unit. Byte manipulation should not be required for little
endian operation (Intel). This feature should only be set for
big endian operation. The function of this unit is described
in the table 11400 shown in FIG. 114.

The LFB Word-Swap Unit modifies words of data
received from the Byte-Swizzle Unit and delivered to the
Color-Lanes Unit. Word swapping allows the upper and
lower 16-bit data words of LFB data to be swapped. The
function of this unit is described in the table 11500 of FIG.
115.

The LFB Color-Lane Unit modifies ARGB fields of pixel
data received from the Word-Swap Unit and delivered to the
Color-Format Unit. Lane juggling allows ARGB data to be
packed in four ways. Color formats not involving alpha are
juggled identically only with the “A” term considered to be
0 bits. In all modes the depth format is not affected. FIG. 116
is a table 11600 describing the function of this unit.

The LFB Color-Format Unit modifies pixels of data
received from the Color-Lanes Unit before delivery to the
pipeline of the Texture Data-path (TD). Data received
defines one or two pixels to generate four pixels of a quad.
When the source data defines just one pixel then four
identical pixels are generated for the quad, otherwise, when
the source data defines two pixels (left and right) then two
independent pixels are replicated vertically.

The table below sets forth the three stages of processing
that exist within the LFB Color Format Unit.

TABLE 22

1. LAB True Color
All input colors (ARGB) are expanded to true color. This manipula-
tion is accomplished through a left shift of the input vector to align
MSBs and a replication of the input MSBs into the remaining LSBs
of the output vector. The following equation illustrates this using
the conversion of 1gh565 to rgh888 as an example.
{1[7:0], g[7:0], b[7:0]} <= {1[4:0], [4:2], g[5:0], g[5:4],
b[4:0], b[4:2]};

2. LFB Constants
All undefined color components of the LFB format are supplanted
with data defined by the constants taColorAR1, taColorGB1 and
taLfbADConst. The taColorAR1 register defines red, the taColorGB1
register defines green/blue and the taLFBADConst register defines
alpha/depth. The following equations illustrate this functionality for
the red channel.
a[7:0] <= (a_defined_by_ 1fb)? a[7:0] : taColorAR1[7:0];

3. LFB Over-bright
All of the constant-corrected true color components (ARGB) are
converted to an over-bright color range (1.4.8 precision). This is done
with a simple mux based on a comparison to Oxff. The following
equation illustrates this manipulation using red as an example.
1[12:0] <= (1[7:0] == 0xf)? 0x0100 : {5'b0,1{7:0]};

FIG. 117 is a table 11700 that details the processing for
true-color and 1fb-constants of the LFB Color Format Unit.
Beyond the manipulation of data shown in FIG. 117, the
design adds the over-bright conversion indicated above.

The LFB type signal, sent to the PE interface, differen-
tiates between normal rendering data transfers and LFB data
transfers to the PE. The table 11800 shown in FIG. 118
defines equations for determining the LFB Type sent to the
PE.

10

15

20

25

30

35

40

45

55

60

65

54

The Mask sent to the PE encodes sub-pixel coverage for
XY address based LFB. For XY address based LFBs, the 4
pixel masks are set to enable fully covered pixel writes to the
addressed pixels of the LFB. The table 11900 depicted in
FIG. 119 details the interpretation of the coverage mask
based on the state of the LFB Type bus.

The XY address sent to the PE transports XY address for
normal rendering and XY address for XY address based
LFBs. FIG. 120 is a table 12000 that details the interpreta-
tion of the XY address bus based on the state of the LFB
Type bus.

The 36-bit depth of left and right LFB depth values are
sent, LSB aligned, on the Z and Q busses at the VTA
interface to the PE. buses. Data sent on the Q bus during
LFBs is also conditionally modified by the state of
VIDDEV__LFB_W_ SELECT bit of the LFB mode regis-
ter. The table 12100 shown in FIG. 121 details interpretation
of the tdpe_z_pix0, tdpe_z_ dx, tdpe_q_ pix0 and tdpe__
g__dx buses for LFB transactions.

The colors (ARGB) of two pixels (left and right) 12202,
12204 are generated by the LFB Unit and output to the
Combine Unit. At the Combine Unit, left and right pixels are
replicated vertically to create a full pixel quad 12200. See
FIG. 122.

VTA Cache Description

This section describes a method and design for caching
texture data. The design attempts to maximize performance
while minimizing the risk of encountering any difficult
timing bottlenecks.

The VTA texture cache has 4 physical address request
ports and 16 contexts corresponding to the 16 texels that can
be requested per cycle by the TAD unit. Each physical
address port can post a 256-bit aligned memory block
representing a group of texels that fall within that boundary.
In 4-bit per texel mode one S and one T select bits are needed
to further determine which of four 4x4 blocks are needed.
For the 8-bit per texel mode one S bit is needed to further
determine which of two 4x4 blocks are needed in tiled mode
or which half of a 32x1 line is needed in linear mode. The
output from the texel cache is 16 32-bit colors. All format
conversion is done by the texture cache in the stage preced-
ing the cache data store unit.

The texture cache consists of two stages. A color cache
(“L1”) stage and a raw cache (“L.2”) stage. The color cache
stores 16 texel colors per cache entry in a unified 32 bit per
texel format (8888 ARGB). The raw cache stores 256-bit
words from 256-bit aligned reads retrieved from memory.

The following paragraphs describe the I/O ports and port
behavior that the texture cache expects. These port descrip-
tions are independent of the cache implementation chosen.
The cache has three ports: (1) the input request port where
physical addresses are presented, (2) the memory read port,
where the cache interfaces to the memory controller, and (3)
the color output port, where requested texel colors are
presented. DVS flow control is used on all three ports.

The input request port consists of 4 physical addresses
(with additional s,t bits as desired per format), 16 texel
contexts and a valid bit (rvalid) for each address to mark that
request as needed or not needed. Each of the 4 physical
address requests contain the fields 12302, 12304 shown in
FIG. 123, representing one of four physical address request
ports.

It is possible that none or a subset of the total 4 address
requests will be valid and required at a time. Thus, anywhere
from 0 to 4 requests may be posted per DVS transaction.

US 6,778,181 B1

55

Since all of the 16 texel request contexts correspond to a
given 2x2 pixel footprint they are posted together. Those
texel requests that are marked valid (rvalid==1) are satisfied
with texture data by the cache. Those that are marked not
valid (rvalid==0) are not satisfied. Each of the 4 rvalid bits
are preserved and presented with their corresponding color
value at the output of the texture cache.
In FIG. 124, the color cache context (cc context) field
12402 is generated by the TAD unit; the content of this data
field is shown in FIG. 167 and is discussed along with the
discussion of the color cache context FIFO, below.
In addition to the 4 physical addresses and color cache
context the cache needs to know the color format of the
requested texels. Format information is relevant to the cache
tag unit because it determines the number of bits per texel
and thus the packing organization of those texels in memory.
The format of a given request is also important in the format
conversion unit (FMT) because format conversion from all
the available formats to a uniform 32-bit format is per-
formed by this unit.
The “pass” field 12404 in FIG. 124 is data that gets passed
through the cache, but remains associated with a set of texel
requests in a given DVS ftransaction. This information
includes bilinear blend factors, etc., and any other per pixel
data that is not directly relevant to the cache functionality.
The physical address field 12302 (bits [31:5]) points to a
256-bit aligned address that the requested texel resides in.
Texel color storage is 256-bit aligned. Because there are 4
different bit widths for representing a color (4, 8, 16, and 32)
the blocking within 256-bit words can vary. To facilitate
cache tagging, two bits are appended to the physical address
from the S and T texture map indices (to select 16 texel
subsets from a 64 or 32 texel footprint):
1. In 4-bit per texel mode: physical address bits [4:3] are
set to {T[2], S[2]}.

2. In 8-bit per texel tiled mode: physical address bits [4:3]
are set to {1'b0, S[2]}.

3. In 8-bit per texel linear mode: physical address bits
[4:3] are set to {1'b0, S[4]}.

4. In all other modes: physical address bits [4:3] are set to
{10, 1'b0}.

FIG. 125 depicts the data fields 12302, 12502 in the
memory request port. The memory port consists of one
outgoing DVS stream for the request addresses and one
incoming DVS stream for 256-bit data back from memory.
The requests are 256-bit aligned. FIG. 126 illustrates the
field 12602 of the return data.

FIG. 127 shows the data fields in the color output port.
The color output port consists of 16 32-bit colors (fields
12702) along with corresponding rvalid signals (field
12704). Related pass data (field 12706) is also presented on
the same DVS transaction with this color data.

The following paragraphs discuss the input request for-
mats for 4, 8, 16, and 32-bit per texel color. Color space
definition data beyond the number of bits per texel are
preferably not important to the cache at this point. As an
example, the texture cache doesn’t care if a 16-bit format is
ARGB 1555, AR181044, or etc., as long as it is 16 bit per
texel. Only the format conversion unit cares about these
specifics.

FIG. 128 illustrates a texel map 12800 in 4-bit per texel
tiled mode. In 4-bit per texel (compressed) mode each
256-bit word corresponds to an 8x8 raw block of texels. The
color cache stores only the 4x4 sub-block(s) touched by
input requests. Each 16 texel sub-block occupies one color
cache data store entry. However, a 256-bit word (2x2 block

10

15

20

25

30

35

40

45

50

55

60

65

56

of 4x4 blocks 12802, 12804 shown in FIG. 128) only
occupies one raw cache entry. In tiled 4-bit per texel mode:

ST[5:0]={7[2:0], S[2:0]}.

As indicated earlier S[2] and/or T[2] may be appended to
the physical address to tag unique cache entries when one
physical memory location of 256 bits maps to more than one
color cache entry.

In 8-bit per texel mode (palette, alpha, intensity, alpha-
intensity, etc.), 32 texels are represented by a 256-bit word.
In tiled mode, this is a horizontal group of two 4x4 blocks
12902, 12904 as shown below in FIG. 129. In tiled 8-bit per
texel mode:

ST[5:0]={7[2:0], S[2:0]}.

In 8-bit per texel linear mode, a 256-bit word corresponds
to a 32x1 line of texels 13000 as shown in FIG. 130. In this
case the address generation logic preceding the cache pro-
vides S[4] as part of the physical address. In linear 8-bit per
texel mode:

ST5:01={T]0], S[4:0T}.

In 16-bit per texel mode (alpha-palette, RGB565,
AR181044, etc.), 16 color values are represented by one
256-bit word. In 16-bit per texel tiled mode, this corresponds
to one 4x4 block of colors 13100, shown in FIG. 131. In
tiled 16-bit per texel mode:

ST[5:0]={7[2:0], S[2:0]}.

In 16-bit per texel linear mode a 256-bit word corresponds
to one 16x1 line of texels 13200 as shown in FIG. 132. In
linear 16-bit per texel mode:

ST[5:0]={7[1:0], S[3:0]}.

In 32-bit per texel mode only 8 texels are represented by
256 bits. All other modes retrieve one or more color cache
entries worth of data (16 texels); this mode only retrieves
half of a color cache entry worth of data (8 texels). There are
two different solutions to deal with this special case.

FIG. 133 illustrates a texel block 13300 for 32-bit per
texel tiled mode. FIG. 134 depicts a row of texels 13400 for
32-bit per texel linear mode. In 32-bit per texel mode two
256-bit reads are used. The TAD unit submits a 512-bit
aligned request for the lower 256 bits. In 32-bit mode the
raw cache walker submits the second request to fill the
second half of the 4x4 block. In 32-bit per texel tiled mode:

ST[5:0]={7[2:0], S[2:0]}.
In 32-bit per texel linear mode:
ST[5:0]={7[2:0], S[2:0]}.

The mapping from a 256-bit read atom to each of the four
bit depths will now be considered. FIGS. 135 through 138
show the mappings 13500, 13600, 13700, 13800 for tiled
mode 4 bit per texel through 32 bit per texel textures. Note
that two 256 bit reads can be used to represent the 4x4 block
of texels in a color cache entry. FIG. 139 illustrates the
mappings 13900 in linear mode for &, 16, and 32 bpp.

The following paragraphs describe a two stage cache
architecture to serve as the VTA texture cache. The VTA
needs 16 colors per cycle from the cache. It is, however, very
difficult and costly to pipeline a high-speed multi-port cache.
Some effort is therefore spent in the TAD design pre-

US 6,778,181 B1

57

extracting relationships between the many requests so the
basic caching functions (tag compares and tag replacement
policy) can be substantially simplified. In fact, the core
functionality of both cache levels is preferably only that of
a single ported FA/LLRU tag unit.

The texture cache is composed of two cache stages, each
operating independently. The color (“L1”) cache receives up
to 4 or more physical address requests; each request can
satisfy up to 16 or more pre-grouped texel requests. The raw
(“L2”) cache attempts to group these requests into unique
256-bit raw cache entries or memory requests. The raw
cache posts zero to four memory requests when zero to four
of its incoming requests are misses. The raw cache spends
one cycle accepting each unique 256-bit aligned request.
Thus three unique requests will take three cycles, even if
they are all hits; of course, if they are all hits, they will
produce no memory requests. The raw cache spends one
cycle emitting each valid request to the format conversion
unit.

FIG. 140 shows the block level organization 14000 of the
color cache and the raw cache. The color cache tag unit
14002 is fed up to four or more addresses; based on color
cache hit/miss information, the raw cache 14004 then works
to satisfy each of the misses.

The concept of a unique request group is important to the
texture cache design. FIG. 141 illustrates the concept of a
unique request group in S and T space. For the purpose of
this example a 4-bit per texel texture is used. FIG. 141 shows
a 4x4 set of color cache entries (each entry being 4x4
texels). Four pixels are shown, each with a unique S, T pair.
The S,T pair is split out to four bilinear samples. Pixel 14120
has one texel from each of the four groups (14102-14108).
All of pixel 14122°s texels come from Group 14104. Two of
pixel 14124°s texels come from Group. 14106, and two from
Group 14108. All of pixel 14126°s texels come from Group
14108. Another way to view this situation is Group 14102
satisfies 1 request, Group 14104 satisfies 5; Group 14106
satisfies 3; Group 14108 satisfies 7. Together they satisfy all
16 requests. The key observation is that all 16 samples come
from only 4 unique groups; this is equivalent to saying that
all 16 texel requests are satisfied by 4 cache tag queries.

One additional observation is worthwhile at this point: in
any tiled mode, if a mip-mapped texture is bein used and one
observes the mip-map texel stride constraints in S and T
(0.52AS<1, 0.5 AT<1) then there will never be a situation
where more than 4 unique blocks are needed to satisfy all 16
requests. In other words, with the common case constraints
met, the probability of missing more than 4 is equal to 0. Of
course, not all textures are mip-mapped and tiled; and the
mip-map constraint is not necessarily going to be met at all
times given our ability to bias the lod and under-sample. In
the TAD unit, the group walker unit handles arbitrary cases
of group configurations; 1 to 16 groups is possible.

The cache is optimized to handle the most common case
of mip-mapped textures without an extreme lod bias applied.
Designing the cache to handle four unique group queries per
cycle is based on the conjecture that the sum of miss
probabilities from zero through four misses encompasses the
vast majority of all real world miss cases. Highly minified,
highly lod-biased, linear, and non-mip textures can math-
ematically produce more than 4 misses and will therefore
see gradual performance degradation as the probability of
larger miss counts (>4) increases.

Linear mode presents an exception to the working
assumption of a texture space footprint of 4 cache entries or
less. All linear mode textures may require more entries to
achieve the same texel space footprint height as tiled mode
textures.

10

15

20

25

30

35

40

45

50

55

60

65

58

It should be noted that two memory request may be
necessary for each 32-bit per texel mode miss. Each 256-bit
read atom only fetches 8 texels; half the needed data for a
4x4 color cache entry.

The raw cache feeds the data conversion unit, which does
all required color space conversion or decompression into
32-bit ARGB color. Finally the color cache data store
gathers requested data for presentation down the pipeline as
completed requests of up to 16 or more texels.

The data fields 14200 directly entering the color cache tag
unit are shown in FIG. 142. There are four address requests
14202. Each has a physical address 14204 and S and T bits
to select a sub block of 4x4 texels in 4 and 8-bit modes. A
request valid (rvalid) sub-field 14206 is included to mark
each of the four physical address requests.

The color cache tag unit receives four address requests per
cycle and produces four address requests to the raw cache
per cycle. This unit will stall in lock step, but will not
generate stalls. FIG. 143 shows the arrangement of the color
cache tag unit 14300. It consists of four independently
operating tag modules 14302 and a data bypass module
14304. The data entering each of the four tag modules is an
address and a valid.

The data exiting each tag module is a ccts (color cache tag
status) signal. The data fields 14400 within each ccts signal
are shown in FIG. 144. This index, together with the tag unit
number, indicates which address to be read or written in the
color cache data store unit. When writing to the data store
unit (on a miss, when miss=1), these bits are enough to
define which addresses are to be written. When reading
(miss=0 and rvalid=1), additional S and T bits may be
needed; the necessary bits are extracted from the lower S and
T bits as indicated in FIGS. 128 to 134. The rvalid0-3
signals are piped through the bypass data module.

Each tag module consists of four tag entries 14502 and
one tag control module 14504. FIG. 145 shows the block
level construction of a tag module 14500. Each tag entry
stores an address tag and an index number from 0 to 3. Each
of these blocks takes a reset; on reset, tag module 0 resets its
index to 0, tag module 1 resets its index to 1, and so on. Each
tag module resets to a “not valid” state. The mapping from
an address tag to an entry in the cache data store is made
through this index. The LRU policy is implemented through
shifting the tag and index towards the bottom of the list until
it is de-allocated and replaced with new data at the top of the
list. When an entry hits, the tag is collapsed in the list and
re-inserted at the top of the list. The tag controller module
coordinates the four tag modules.

The behavior of each tag entry can be divided into
compare and replace functions. The compare function con-
sists of reporting a hit if the input address (addr31:3])
matches the tag value and the tag state is “valid”. When the
tag controller asserts the write signal back to the tag module,
the locally stored compare tag is overwritten with the
address input; the locally stored index value is overwritten
with iin, and the state of that entry is set to “valid”. If the
inval signal is asserted then the entry state is set to “not
valid”. All four tags are invalidated on the same cycle if
invalidate is asserted and “stall” is de-asserted.

The tag controller generates four sets of two signals that
go to each of the four cache tag entries. The inval signal is
asserted when stall is de-asserted and invalidate is asserted.
This clears the tag state. The write signals depend on the
collection of hit signals, stall, and rvalid. If rvalid is
de-asserted then no update action takes place. If stall is
asserted, the unit stalls (in lock step). If a hit occurs, then all
the writes starting with the hitting tag on up the chain are

US 6,778,181 B1

59

asserted. This causes the tag that hit to be collapsed in the list
and reinserted at the top. If no tag hits, then all the writes are
asserted, causing the oldest entry to be de-allocated and a
new entry to be inserted at the top. The tag controller
generates an index (tag controller signal iout) to insert at the
top entry, along with the new address which is inserted at the
top of the list. This is accomplished by selecting the hit index
when a hit occurs or the bottom index when a miss occurs.
After a few cycles of operation, the index order looking
down the list can become arbitrarily jumbled, but the tag to
data store mapping is simple and explicit. A beneficial side
effect of this method of mapping is that the LRU replace-
ment policy can be implemented with little additional logic.

The index output is the same as the iout signal. This is the
hit index when a hit occurs, and the newly allocated index
when a miss occurs. The hit output is asserted in the form of
miss=0 and rvalid=1. The bypassed rvalid output signal is
asserted a cycle after an rvalid input is received, along with
flopped miss and index signals.

The format conversion unit is positioned between the raw
cache unit and the color cache data store unit. It merges and
synchronizes the color cache context FIFO data stream and
the memory read data stream. On a color cache miss, it
performs one of four major color space conversions
(YUV2RGB, RGB2RBG, PLT2RGB, COMP2RGB). On a
color cache hit, it generates up to 16 or more read addresses
per cycle.

The merging rules for the color cache context FIFO
stream and the raw cache stream are straight forward. If a
color cache miss is reported in the context FIFO then both
streams present a valid for either to progress. If no miss is
presented in the color context FIFO stream then CC FIFO
stream may progress until a miss is encountered. If no miss
is encountered, the raw cache stream is stalled.

The format conversion unit waits until the raw cache
provides the data (either from a memory read or from a raw
cache hit). On a miss, once the data is provided from the raw
cache output stream the format conversion unit performs the
appropriate color space conversion.

The format conversion unit can be stalled by the unit
down stream; however, the down stream stall will only be
propagated upstream if there is valid data to the color cache
data store unit. Bubble collapsing is therefore performed in
the format conversion unit.

The format conversion unit usually takes 1 cycle to absorb
data back from the raw cache, except in 32-bit ARGB texels
where it takes 2 cycles (limited by the raw cache output
bandwidth, providing 256 bits—only 8 texels per cycle).
YUV and palette-based cache entry conversions take 4
cycles.

In 32-bit ARGB format, the format conversion unit will
accept one token from the color cache FIFO while it accepts
one 256-bit token from the raw cache; on the next cycle the
format conversion unit will stall the color cache FIFO and
accept a second 256-bit token from the raw cache. The raw
cache can guarantee ordering of the two 256-bit units (lower
address 256-bit aligned word followed by higher address
256-bit aligned word). In this way, it is unimportant to the
color cache and color cache FIFO context how many
memory retrieval cycles are needed to satisfy a color cache
miss.

In YUV and Palette formats, the format conversion unit
will stall both the color cache FIFO and raw cache 3 cycles
for every miss (4 total cycles per 16-texel conversion to the
color each). This is due to limited YUV and palette conver-
sion bandwidth. The YUV 32-bit format is an exception;
only two stalls are generated to the raw cache because two

10

15

20

25

30

35

40

45

50

55

60

65

60

256-bit words are needed in this format during the 4 con-
version cycles.

Inputs 14600 from the raw cache unit are shown in FIG.
146. When the texels are stored in a tiled storage mapping,
format[5]=1. When format[5]=0, this indicates a linear stor-
age mapping. FIG. 147 is a table 14700 where format[4:0]
indicates the format of the data, “tformat”.

FIG. 148 illustrates fields 14800 for input from the raw
cache. In 4-bit per texel mode, [4,3] are used to select which
of the four 64-bit words to use. In 8-bit per texel mode,
Isbst[4,3] are used to select which of the two 128-bit words
to use. In all other modes, Isbst[4,3] are not used.

Input data from the raw cache is 256-bits wide. The raw
cache output Isbst[4:3] is used to select one of four 64-bit
words from the 256 bit memory read in 4-bit per texel
compressed mode or 128-bits in the 8-bit/texel formats.

FIG. 149 is a block diagram of the format conversion unit
14900. As shown, the format conversion unit includes a
YUV to ARGB conversion module 14902. Three YUV
formats are supported. KYUV format takes 32-bits of data
per texel and converts them to 32-bits ARGB per texel. The
next two YUYV color space formats allocate 16 bit per texel;
the two formats differ only in their byte alignment. One is
VY, UYO and the otheris Y, VYU, where Y, and Y, share
the same UV values in both cases. In both cases the
following assumptions are made:

16=Y=2173, 162U =240, 16=V=240

The following equations are used for the color space
conversion:

R=1.164 (Y-16)+1.596 (V-128)

G=1.164 (Y-16)-0.391 (U-128)-0.813 (V-128)

B=1.164 (Y-16)+2.018 (U-128)

K=alpha

There are two implementation options in performing the
YUYV to RGB conversion:

1. Each unique subtract and add is rolled into a lookup
table. The results are added together to form each of
R,G and B.

2. Extract the significant bits in the coefficient of each
multiply that will contribute to the final value of R, G,
B. Shift the Y, U or V values to the coefficient bits that
is a ‘1°. Perform multiple adds on the shifted values to
obtained the intermediate terms. Add the intermediate
terms to get R, G and B.

Note that the second method produced the same precision
(preferably a maximum of 1 Isb error) with much smaller
area.

An analysis was performed (in C) to find a set of coef-
ficient tweaks that produce a maximum of 1 Isb error in RGB
while minimizing the number of add/subtracts needed to
represent the operation (by maximizing the number of 0’s or
1’s in the coefficient’s binary representation). Shown below
is a table containing the YUV to RGB coefficients labeled
“OLD” for the standard YUV to RGB color space conver-
sion coefficients and “NEW” the binary optimized coeffi-
cients.

TABLE 23
OLD NEW
1.164 —=> 1.1640625,, —=> 1.0010_101,
0.391 —=> 0.390625,, —=> 00110 01,
2.018 —=> 2015625, —=> 10.0000_01,

US 6,778,181 B1

TABLE 23-continued
OLD NEW
1.596 == 1.59375,, == 1.1001_1,
0.813 => 08125, ==> 0.1101,

Checking the Y, U and V values in hardware:

/16 <=y <= 2173
t_ymin =~ | yuv_mux_y[7:4] ;
if (yuv_mux__y > 8 heb)
t__yrange = 8’heb;
else if (t_ymin == 1"b1)
t_yrange = 8’104;
else
t_yrange = yuv__mux_y ;
// 16<=u <= 240
t_umin = ~| yuv_mux_u[7:4] ;
t_umax = & yuv_mux_u[7:4] ;
if (t_umin == 1"b1)
t_urange = 8’104 ;
else if (t_umax == 1’b1)
t_urange = 8’hf0 ;
else
t_urange = yuv__mux_ u;
/] 16<=v <= 240
t_vmin = ~| yuv_mux_v[7:4] ;
t_vmax = & yuv_mux_v[7:4] ;
if (t_vmin == 1’b1)
t_vrange = 8’104 ;
else if (t_vmax == 1"b1)
t__vrange = 8’hf0 ;
else
t_vrange = yuv_mux_v ;
/1Y -16
// Will never be underflow, since the min t__yrange is 16
t_yminus = t_yrange - 16 ;
In order to obtain Y1, where
Y1 =1.1640625* (y - 16) (decimal)
=1.0010101* (y - 16) (binary)

Shift (y-16) to the position that contains a binary ‘1 in the
new coefficient, and added all the shifted (y-16) values.
Then truncate them to have 2 bit of fraction. All the other
values for V1, V2, Ul and U2 are obtained from the similar
way. Red, Green, and Blue values then can be obtained by
adding Y1, V1, V2, U1 and U2 according to the equation and
truncating the trailing 2 fraction bits.

/1Y1
//1.164 ===> 11640625,
/1 ===>1.0010_101,
Y1 = ((t_yminus<<7) + (t_yminus <<4)
+ (t_yminus <<2) + t_yminus) <<5;//0.8.2
// V1
//1.596 ===> 1.59375,,
/1 ===>1.1001_1,
V1= ((t_vrange <<5) + (t_vrange <<4)
+ (t_vrange <<1) + t_vrange — (204 <<5)) <<3;
/7182
/102
/72018 ===> 2.015625,,
/1 ===> 10.0000_01,
U2 = ((t_urange <<7) + t_urange — (258 <<6)) <<4;//
1.8.2
/U1
/70.391 ===> 0.390625,,
/1 ===>0.0110_01,
Ul = ((t_urange <<6) + (t_urange <<4)

+ (t_urange <<3) - (50 <<6)) <<4;//1.72
/1V2

10

15

20

25

30

35

40

45

50

55

60

65

-continued
//0.813 ===> 0.8125,,
/1 ===>0.1101,
V2 = ((t_vrange <<3) + (t_vrange <<2)

+t_vrange — (104 <<4)) <<2;//1.7.2
/ / Red, sign extending 1 bit on V1
R=(Y+V1)<<2;//19.0
If (R » 255), R=255 ;
If R<0),R=0;
/ / Green, sign extending 2bits on Ul and V2
G=(Y-Ul-V2)>>2;//190
If (G »255),G =255
If(G<0),G=0;
/ / Blue, sign extending 1 bit on U2
B=(Y+U2)<<2;//190
If (B >255),B=255;
IfB<0),B=0;

A total of 4 YUV conversions are performed per cycle,
thus 4 cycles are needed to fill up 16 texels in a color cache
miss cycle. At the end of the forth pipe in the format
conversion unit, 4 converted texels are registered every
cycles. After all of the 16 texels are converted and
accumulated, the 16 texels are written into the color cache
data store.

A palette to ARGB conversion unit 14904 is also pro-
vided. Palette based textures can be either 8 bit per texel or
16 bit per texel. The 8 bit type assumes a fully opaque
texture (alpha=0xff), while the 16-bit type uses 8 alpha bits
and 8 palette index bits.

The palette lookup RAM has four 24-bit read ports and
one 24-bit write port. With four read ports it takes four
cycles to complete 16 index to color conversions. The
palette LUT can only be written when the pipe is idle. Palette
writes are encoded by the TAD unit and pushed down the
color cache context FIFO. A palette write is indicated by a
swapst[3:0]=0x1 in linear mode (an otherwise illegal
condition).

The ARGB to ARGB conversion unit 14906 starts with
data that is 8-bit/texel, 16-bit/texel or 32-bit/texel. RGB
conversion are performed based on the SW model’s format
conversion table (formats 0,2,3,4,8,10,11,12,13,18). The
conversion consists of muxing of the correct data to the
desired position in the target output ports. All 8 bit and 16
bit per texel RGB formats take one cycle to convert 16
colors from the input 256-bit word. The 32-bit per texel
RGB format takes two cycles to move a 16 color cache entry
into the color cache data store (two cycles of 256 bits each
together yield 512 bits of data).

A compressed to ARGB conversion unit 14908 is also
provided. There are many types of compressed data. The
type discussed here is DirectX Compressed Texture Format.
DirectX has three different modes DXT1, DXT2 and DXT3.

The compressed formats are 4-bit/texel (one DX6 format
is an effective 8 bits per texel with 4 bits for color and 4 bits
for alpha per texel). However, 128-bit or 64-bit of data are
used initially to decompress into 16 texel colors. The format
conversion unit is capable of decompressing 16 texel colors
per cycle.

FIG. 150 illustrates opaque and one bit alpha transparency
blocks (DXT1) 15000 in DirectX.0:Compressed Texture
Format.

if (color0 > colorl) - - treating rgb565 and unsign
number

US 6,778,181 B1

63

-continued

64

TABLE 25-continued

4 colors encoding, always opaque
else

Creating Seven ARGB8888 Colors From Two RGB888 Colors:

3 colors encoding, when texel index= 11, alpha= 5 Color[4] = (2*color0 [1,9,b] + 4*colorl [rgb] + 3) /6
tranparent, rgb=00h alpha[4] = ffh
Color[5] = (colo10 [r,g,b] + 5*colorl [r,g,b] + 3) /6
alpha[5] = ffh
FIG. 151 illustrates explicit texture transparency (Alpha Color6] = colorl [rg,b],
Channel) encoding (DXT2) 15100. Note that Bit 127 to bit ggii[[g]]j B b~ 00b. alohe _—
64 are processed the same as DXT1 format. 16 alpha values _ o Er _
are used as it is without any form of interpolation.)
FIG. 152 illustrates 3-Bit Linear Alpha Interpolation The following table sets forth table look up values.
(DXT3) 15200. Again, Bit 127 to bit 64 are processed the
same as DXT1 format. 15 TABLE 26
Index of Color for texel 31 to texel 0
texel31 to texel0 ARGB8888
If (alphaO > alphal) 0 color[0] => {a[7:0], 1{7:0], g[7:0], b[7:0]}
6 intermediate alpha values are created by 1 color[1]
interpolation 20 2 color|2]
else 3 color[3]
4 intermediate alpha values are created by 4 color[4]
interpolation and 2 implicit alpha values 5 color| 5]
(alpha=0, fully transparent) and (alpha=255, 6 color| 6]
fully opaque) 7 color[7]
25
There are four additional compressed texture formats: FIG. 154 depicts a memory mapping 15400 of texel 31 to
C_HI, CC_CHROMA, CC_MIXED and CC_ALPHA. texel 0.
Each of the formats compress two 4x4 texel blocks into 128 FIG. 155 shows the Compressed Texture Format (CC__
bits. A unique number(format[4:0]=VIDDEV__74_ Fx71) is . CHROMA) 15500. In CC?CHROMA format, mode=010,,
assigned to this compressed texture format to distinguish it color[3:0](RGB555) are converted into RGB888 as before.
from the rest of the texture formats. Color3 to Color0 are used as they are, no interpolation is
FIG. 153 depicts compressed texture format (CC__HI) needed. Color3 to color(are used as the contents of a 2-bit
15300. In CC__HI format, mode=002, colorl(RGB555) and ~ 1ook up table. Alpha is always opaque(Oxff). The color
color0(RGB555) are converted into RGB888 by duplicating . (ARGB8888) for texel 31 to texel 0 could be obtained by

the upper 3 bits for the 3 Isb. See the following table. Colorl
and color0 are used to linear interpolate 5 more levels of
color to create seven total levels of colors and 1 alpha
(transparent). The first seven colors always have alpha=ffh

performing table look up from the 2-bit index that is
assigned to them.
The following table sets forth table look up values.

(opaque). The eighth color value indicates that alpha=00h; TABLE 27
with alpha=0,, the RGB component is set to 0 (full black).
These eight colors are used as the content of a 3 bit index Index of Color for texel 31 to texel 0
texel 21 to texel 0 ARGB8888
look up. The color(ARGB8888) for texeldl to texeld is
obtained by muxing in the selected one of eight available 0 color0, alpha channel=ffh =>
colors (7 opaque colors, 1 clear black). 45) ig%gﬁ}aﬁgg];g;ﬂ;gg:0]}
2 color2, alpha channel=fth
TABLE 24 3 color3, alpha channel=fth
Generating RGB888 from RGB555: .
FIG. 156 depicts the Compressed Texture Format (CC__
Colorl (red) = { [125:121], [125:123] } 50 MIXED) 15600. In CC_MIXED format, mode[0]=1, (only
ggigﬁ Eg:;) z } Efgﬁf]] [[;22111138]]; one bit), color2 and color3 are used for texel 31 to texel 16,
Color0 (ted) - { [110:106]: [110:108] } and color0 and colorl are used for texel 15 to 0.
Color0 (green) = { [105:101], [105:103] } When alpha[0]=0, these two pairs of colors color0/1 and
Color0 (blue) = { [100:96], [100:98] } color2/3 are interpreted as RGB565 colors. For colorl and
55 color3, the Isb of the green channel comes from the glsb bits.
Colorl.green[0]=bi1345. Color3.green[0]=bil346. For
TABLE 25 color(and color2, the Isb of the green channel comes from
the upper select bit for texel 0 and texel 16, respectively.
Creating Seven ARGB8888 Colors From Two RGB888 Colors: Color0.green[0]=bitl xor bil345. Color2.green[0]=bil71
Color]0] = colord [ngb 60 xor bil346. The two colors are then expanded to RGB8&S8
= »gbls . o
alpha[0] = ffh format by bit replication, and used to create 2 more levels of
Color[1] = (5*color0 [1,9,b] + colorl [r,g,b] + 3) /6 color in between the color()/2 and colorl/3 values through
alpha[1] = ffh* . linear interpolation. A total of 4 colors are therefore avail-
;;1;;[[22]]:% color0 [rgb] + 2*colord [rgb] + 3) /6 able for 2-bit index per texel selection.
Color[3] = (3*color0 [rg,b] + 3*colorl [L9.6] + 3) /6 65 When alpha[0]=1, only 1 more level of color is created
alpha[3] = ffh between colorl/3 and color0/2, texel index of 3 will indicate

transparent black.

65

US 6,778,181 B1

The color (ARGB8888) for texel 31 to texel 0 could be
obtained by performing table look up from the 2-bit index

that is assigned to them.

The following table describes creating the base colors

color3 and color2.

TABLE 28

Color3 (red) = { [123:119], [123:121] }

Color3 (green) = { [118:114], [126], [118:117] }

Color3 (blue) = { [113:109], [113:111] }
Color2 (red) = { [108:104], [108:106] }

Color2 (green) = alpha ? { [103:99], [103:101] }

10

: { [103:99], [33] " [126], [103:102] }

Color2 (blue) = { [98:94], [98:96] }

15

The table below describes creating the base colors colorl

and color0.

TABLE 29

20

Colorl (red) = { [93:89], [93:91] }
Colorl (green) = {[88:84], [125], [88:87] }
Colorl (blue) = {[83:79], [83:81] }
Color0 (red) = {[78:74], [78:76] }
Color0 (green) = alpha ? {[73:69, [73:71] }

{ [73:69], [1] [125], [73:72] }

Color0 (blue) = { [68:64], [68:66] }

25

NOTE: When alpha[0]=0, because one of the select bits is used to deter-

mine a bit of color0/2, the software performs differently. The recom-

mended method is presented int eh following table. The method describes

how to get color0 & colorl and the associated select bits. The same 30

method applies to the 1sb of green for color2 & color3.

TABLE 30

—

Determine 5-6-5 values for colorQ & colorl

N

35

Determine the select bits for each pixel in the 4x4 block.

3. If(pixel[0]select[1] = colorO.green[O]Acolorl.green[O]) then swap

color0 & colorl, and invert all the select bits.

Below is a snippet of pseudo-C to generate bits 0-31, bits

64-93 & bit 125 based on the initial color0, colorl and pixel

indices:

struct RGB565 {Byte red; Byte green; Byte blue};
struct CSels {Byte index[16]};
// cc_mixed_right half derives bits[93:64] of the
// 128 bit data word of a
// CC_MIXED non-alpha compression block and
// returns them in ‘bits 64_to_ 31",
// Plus, as a bonus, you will receive bit 125,
// containing the Isb of
// the green channel of colorl, and bits_0_ to_ 31,
// containing all of the pixel indices - All
// at no extra charge.
void
cc__mixed_right half(RGB565 color0, RGB565 colorl,
CSels pix, Dword &bits_ 0__to__31,
Dword &bits_ 64__to_ 93, Bit &bil345)

RGB565 o__color0;
RGB565 o__colorl;
// Determine whether to switch color0 &
colorl
if (((pix.index[0] >> 1) & 1) I=
((color0.green colorl.green) & 1)) {
o__colorl = color0;
o__color0 = colorl;
for (int i=0; i<16; i++) pix.index[i] =
~pix.index[i] & 3;

}else {

45

60

65

66

-continued

o__color0Q = color0;
o__colorl = colorl;

// Save lsb of colorl.green in bil345
bi1345 = o__colorl.green & 1;
// Convert colorQ & colorl to RGB555, and
then munge into bits 64 to 93
o__color0.green >>=1;
o__colorl.green >>=1;
bits_64_to_93 = ((o_colorl.red<<25) |
(o_colorl.green<<20) | (o__colorl.blue<<15)

(o_color0.red<<10) | (o__color0.green<<5) |
(o__color0.blue) %

// Munge the pixel indices into bits 0 to 31

bits_ 0_to_31 = 0;

for (int i=0; i<16; i++) bits_0_to_ 31 |=
pix.index[i]<<(i*2);

EQUIVALENT for bit accurate C-sim for texel 31 to 16
If alpha=0,
Color[0] = color2[r,g,b] , alpha=ffh
Color[1] = (2 * color2[r,g,b] + color3[r,g,b] +
1) / 3, alpha=ffh
Color[2] = (color2[r,g,b] + 2 * color3[r,g,b] +1)

/ 3, alpha=fth
Color[3] = color3 [r.g,b], alpha=ffh
If alpha=1,

Color[0] = color2[r,g,b], alpha=ffh
Color[1] = (color2[r,g,b] + color3[r,gb]) / 2,
alpha=fth
Color[2] = Color3[r,g,b], alpha=ffh
Color[3] = [a,1,g,b] = 00h
EQUIVALENT for bit accurate C-sim for texel 15 to 0
If alpha=0,
Color[0] = colorO[r,g,b] , alpha=ffh
Color(1) = (2 * color0[r,g,b] + colorl[r,g,b] +
1) / 3, alpha=ffh
Color[2] = (color0[r,g,b] + 2 * colorl[r,g,b] + 1)
/ 3, alpha=fth
Color[3] = colorl[r,g,b], alpha=ffh
If alpha=1,
Color[0] = colorO[r,g,b], alpha=ffh
Color[1] = (color0[r,g,b] + colorl[r,gb]) / 2,
alpha=fth
Color[2] = Colorl[r,g,b], alpha=ffh
Color[3] = [a,1,g,b] = 00h

The following table sets forth table look up values.

TABLE 31

Index of texel Color for texel 31 to texel 0

31 to texel 0 ARGBS8888

0 color[0], {a[7:0], 1[7:0], g[7:0], b[7:0]
1 color[1]

2 color[2]

3 color[3]

FIG. 157 depicts the Compressed Texture format (CC
ALPHA) 15700. In CC__ALPHA format, mode[2:0]=011,,
color2, colorl and color0 (ARGB5555) are converted to
ARGBS8888 by duplicating the upper 3-bits for the 3 Isb.

When lerp 0, color2 to Color0 are used as they are, no
interpolation is needed, and texel index of 3 indicates
transparent black. A total of 4 colors will be used as the
content for the 2-bit look up table (mux selection).

The color (ARGB8888) for texel 31 to texel 0 could be
obtained by performing table look up from the 2-bit index
that is assigned to them.

US 6,778,181 B1

The following table sets forth table look up values.
TABLE 32
Index of texel Color for texel 31 to texel 0
31to 0
(ARGBS888)
0 Color[0] = color0 alpha = alpha0
1 Color[1] = colorl alpha = alphal
2 Color[2] = color2 alpha = alpha2
3 Color[3] = 000000h alpha = 00h

When lerp=1, color2 and colorl will be used as the base
colors for texel 31 to texel 16. Colorl and color0 will be
used as the base colors for texel 15 to texel 0.

These two pairs of colors are used to create 2 more levels
of color in between Hi and Lo through linear interpolation.
A total of 4 colors will be used as the content for the 2-bit
look up table (mux selection).

The color (ARGB8888) for texel 31 to texel 0 could be
obtained by performing table look up from the 2-bit index
that is assigned to them.

The following table describes creating the 4 colors from
the base colors for texel 31 to texel 16.

TABLE 33

EQUIVALENT for bit accurate C-sim

Color[0] = color2[a,r,g,b]

Color[1] = (2 * color2[a,r,g,b] + colorl[a,rgb] +
1)/3

Color[2] = (color2[a,r,g,b] + 2 * colorl[a,rgb] +1)
/3

Color[3] = colorl[a,r,g,b]

The table below describes creating the 4 colors from the
base colors for texel 15 to texel 0.

TABLE 34

EQUIVALENT for bit accurate C-sim

Color[0] = color0[a,r,g,b]

Color[1] = (2 * colorO[a,r,g,b] + colorl[a,r,gb] +1)
/3

Color[2] = (colorO[a,r,g,b] + 2 * colorl[a,r,gb] +1)
/3

Color[3] = colorl[a,r,g,b]

The following table sets forth table look up values.

TABLE 35

Color for texel 31 to texel 0
ARGBS888S8

color [0]

color [1]

color [2]

color [3]

Index of texel 31 to 0O

LM = O

FIG. 158 graphically describes write address generation
15800 for tiled storage mapping. In a color cache miss, 16
texel colors can be produced by the format conversion unit
to fill a cache entry.

One write address wradd[3:0] 15802 needs to be gener-
ated to write 4 texels into 4 color cache data store RAM
locations of same cache tag group and cache entry.

When more than one misses are indicated by miss[3:0],
the miss with the lower tag group, miss[0] is serviced first,
then miss[1], miss[2] and finally miss[3]. The tag field in the
write address are 00, 01, 10, 11 respectively when miss[0],
miss[1], miss[2], miss[3] are being serviced. The cache entry
field in the write address will be the contents in 10, 11, i2 or
i3 respectively when miss[0], miss[1], miss[2] or miss[3]
serviced.

10

15

20

25

30

35

40

45

50

55

60

65

68

The position of cache slots that will be occupied by the 16
texels are based on the linear/tiled storage mapping and their
st[[3:0] position.

The format conversion unit also needs to mux the con-
verted texel colors appropriately to the respective color
cache data store ram based on the two different storage
mapping styles (tiled/linear). FIGS. 159-162illustrate sev-
eral storage mapping styles. FIG. 159 depicts a cache tag
group 15900 for tiled storage mapping. FIG. 160 illustrates
a cache slog 16000 for tiled storage mapping. FIG. 161
shows a cache tag 16100 for linear storage mapping. FIG.
162 illustrates a cache slot 16200 for linear storage mapping.

FIG. 163 illustrates read address generation 16300. There
are 4 read address generation units in the format conversion
unit according to one embodiment. Each of the read address
generation units are assigned to one of four 2x2 texel for
each pixel. In each cycle, up to 16 or more texel addresses
are generated (4 per generation unit). Pg0[1:0], pg4[1:0],
pe8[1:0] and p181[1:0] contains the tag group that corre-
sponding to upper lef reference texel for the upper left pixel,
upper right pixel, lower left pixel and lower right pixel
respectively. Where st0[3:0], st4{3:0], s130[3:0] and s134
[3:0] are for the upper left reference texel of the upper left
pixel, upper right pixel, lower left pixel and lower right pixel
respectively.

With the st reference values and the pg0 (pixel group), all
the tag groups for the 2x2 texels can be computed. Using the
tag group to select i0, il, i2 or i3 (if tag=00, then i0 . . . if
tag=11, then i3), the contents of the selected i0, i1, i2, or i3
will be the cache entry.

Depending on the linear or tiled storage mapping, and the
st reference values, the cache slot of the desired 2x2 texel is
thus obtained.

These four addresses are finally muxed to the correct
RAM cell to get the needed texel.

The mask bits, m0[3:0], m4[3:0], m8[3:0] and m12[3:0]
are sticky and accumulate to indicate valid texel set (rvalid
[15:0]). The color cache data store unit will be able to
consult the rvalid[15:0] to obtain the valid texel mask
output. When all read and write addresses are set up the
“last” signal is asserted, indicating to the color cache data
store unit that it needs to generate a valid DVS transaction
to the TD unit-the next unit below the texture cache in the
pipeline.

FIG. 164 illustrates the S, T Swizzle 16400 for a tiled
storage map. FIG. 165 shows the S, T Swizzle 16500 for a
linear storage map. In order to realigned the read data from
the color cache store in a 2x2 texel foot print with upper left
texel, upper right texel, lower right texel and lower left texel,
the read data can be swizzled in S or T space, depending on
the reference texel and the linear or tiled storage mapping.
As shown, a swap in S means: swap both upper and lower
texels left to right. A swap in LT means: swap the left texel
top to bottom. A swap in RT means: swap the right texel top
to bottom.

FIG. 166 illustrates the output fields 16600 from the
format conversion unit. Color cache data store unit handles
write around when writing and reading from the same
address.

The color cache context FIFO is used to account for the
uncertainty in memory request latency when conveying
information from the color cache tag unit to the color cache
data store unit. FIG. 140 (discussed above) shows the
placement of the color cache context FIFO in the texture
cache. FIG. 167 shows the data fields 16700 pushed into this
FIFO. Each unique color cache miss results in a push on the
color cache context FIFO of the data in FIG. 167. The color

US 6,778,181 B1

69
cache context takes 58 bits in the FIFO, the pass data takes
up another 116 bits. A total of 174 bits are needed in the
color cache context FIFO. The FIFO target size will be 176
(11*16) bits to leave 2 spares. The group context data in

70

-continued

end
else begin // do conditional pop on ccfifo in fmt

FIG. 167 is gathered into a single vector called gcontext in 5 gcontext [58:0] = ccfifo [58:0:];
Verilog. The remainder of the color context FIFO contains psbundle [121:0] = ccfifo [180:59];
escorted state: // cefifo [183:181] reserved
. end
// extract individual signals from ccfifo bit sub-
fields . . .
10
A . .
)1 eefifo[:] definition //// The pass field contains all per-pixel non-cache related
Il geontext vector Jf/ data such as blend factors and “pstate” data.
/////}i////WWW/////////(/1//{,////1/"/;/;]3- The upper three bits (7:5) of the format field specifies
" C;Iiseif E’ _;C]’mpute: yo[1_0]_' y access modes. One bit indicates if the access is to local RAM
zcontext B2l - 554[1;0]; 15 or AGP space (bit 7). One bit indicates if the access is to tiled
geontext [5:4] = pe8[1:0]; or linear space (bit 6). And if the access is to a tiled space,
geontext [7:6] = p181[1:0]; then the third bit is specifies which of two tile mode is being
geontext [11:8] = st0[1:0]; used (bit 5). The lower 5 bits (4:0) state which color space
gzgﬁgt Hgia - :;43[3[:2_]6] format is being used; only the lower 5 bits actually have to
zcontext [2320] = s134[1:0} 20 be sent down the FIFO to the format conversion unit (FMT).
geontext [27:24] = m0[3:0]; The pixel mask information field (pm info) 16702 states
gcontext [31:28] = m4[3:0]; which texel requests have been filled. The first mask corre-
geontext [173:32] = m8[3:0]; sponds to request ports 0 to 3 (bits 0 to 3 in the mask nibble);
geontext [39:36] = m12[3:0]; th int d to th left (0 ioht (1
// these are computed and added by CTU: 8¢ 10 furn correspon O ¢ upper l¢ (),’ ypper g K ()’
gcontext [41:40] = i0[1:0} 25 lower left (2) and lower right (3) texel positions for pixel 0
geontext [43:42] = i1[1:0]; (upper left in screen space). Pixel 1 (upper right in screen
gcontext ngig f%ﬁg} space) is repre.sented in “m4’.’. The pixel 2 (lower left in
zzgﬁtzt [51:48] ;iniss.[STO]' screen space) is represented in “m8”. The pixel 3 (lower
J/ these are passed from TAD and tacked on here. right in screen space) is represented in “m12”. When all
geontext [57:52] = formatS:0]; // {1: tiled, 30 requests are satisfied by walking all the groups, the accu-
O:linear}, {SW formats} mulated OR of these four masks is the original rvalid input
geontext [58] = last; // 1: last CC item " Thi " il b ted at th tout of th
I veelor. 1hus vector witl be presenied at the output ot the
/i pstate bundle vector //// cache. When one to four miss occurs, the masks indicate
i which texels are filled after the miss or misses are satisfied.
psbundle [1:0] = pstate_dif1:0]; 35 If more than four misses occur and the color cache spends
psbundle [4:2] = pstate__itrnum[2:0]; th 1 tisfyi t. then th k
pebundle [9:5] ~ potate._mask_pix0[4:0] more than one cycle satisfying a request, then the mas
psbundle [14:10] = pstate_mask_pix1[4:0]; indicates the texels satisfied by the current cycle’s data (up
psbundle [19:15] = pstate__mask_ pix2[4:0]; to four or more cycles).
P:EEEE}Z E‘;%g% - P:EZEZ—nm;:i‘;til[’;[)‘]‘fO]; The st0 through s134 fields 16704 contain the coordinates
gsbun dle [28] ;gstateinewtri' e 40 of each pixel’s top left texel in S, T space. The top left texel
psbundle [30:29] =pstate:pop[1:’0]; serves as the reference from which the other three texel
psbundle [32:31] = pstate_push[1:0]; coordinates will be derived. The st0 through s134 values
psbundle [33] = pstate_void; indicate which of 16 texels from a cache entry satisfies the
g:ﬁﬁﬁgi: Eijig :ﬂ;{fﬁ%’-o} reference texel. The others are always at an offset of +1 in
psbundle [53:52] = ker2f 1:0]; 45 S and +1 in T relative to the reference texel. The format of
psbundle [61:54] = wits__pix0[7:0]; st0 through s134 is {T[l:()], S[lO]}
P:EEEE%Z {ggga fztzfpﬁigg% The pg0 through p181 fields 16706 indicate which of the
P : TWSPIXATS four color cache tag groups each of the four reference texels
psbundle [85:78] = wts_pix3[7:0]; . R X PN . X
psbundle [93:86] = wit_pix0[7:0]; are in. The i0 through i3 fields indicate which tag entries
psbundle [101:94] = wit_pix1[7:0]; 50 from the four groups are participating in this cycle. A value
Psgungie [109:102] = wit_pix2[7:0]; of 3 in the pg0 field indicates that the reference texel for
gzbﬁﬁ e Hgﬁ% zz;;;stl[);s_gjo]’ 1/ in linear mode pixel 0 (st0) is in the cache entry indicated by i3.
if wrapst[0]= 1 o The i0 through i3 fields 16708 map directly to the tag
// then palette modules in the color cache tag unit. Each 10 through i3 value
write for that push . 55 is the hit/miss index from each of the four modules.
gg}leif[[;-?g]] jgg}znggjf‘; [[27;?3’]_ The miss[3:0] field 16710 is a mask that indicates which
paletic [58:32] = 27h0; // linear mode set by 0 of the index_info field index values are misses. In a miss
// push ccfifo (rcu walker) 7 condition, the current cache entry to write is given by the
palette Wr_itf_‘/ : normal mode lowest set miss field flag and the value in the indicated 10 to
,Cfccifga[tfg]%galette[583](2553[62(];[@;?0]_ 60 13 field. For example, if miss [3:0]=0110, then a cache entry
) . e 7 associated with tag group il is to be written first, and ta;
cefifo [180:59] (wrapst[0]& & ted with t g group 1 to b tten first dt g
tformat[5])?{4'h1,118h'0}:psbundle[121:0]; group i2 next. The first cache entry to be filled is selected by
cefifo [183:181] =3b000; // 3 spares reserved the value in il [1:0], the second to be filled is in i2[1:0].The
; . . eld called “last” is a single bit indicating that after pro-
iér()\?vrr)a;z&foca (Sfcrgct)!format[S]) begin // unconditional fi ld, lled “,1 t gl bit ,d ting th t ft ,p
65 cessing the given token to completion (perhaps including a

ccfifo pop to palette write
palette[58:0 = cefifo [58:0:];

cache entry write) the 16 original input requests have been
completely serviced.

US 6,778,181 B1

71

Extracting three texel S,T values from the reference value
involves examining the S and T value of the reference texel
(st0, st4, s130, or s134) and incrementing that value by one
in the S dimension and by one in the T dimension. Incre-
menting in either dimension may exceed the footprint of the
reference texel’s cache entry. Some additional information
may be required to determine both the target cache entry and
the S,T coordinates in that target cache entry.

FIG. 168 illustrates the S, T calculation process 16800,
16802 from a FIFO context when the extracted texel coor-
dinates cross a cache entry boundary. The orientation of the
groups is specified by the notion of gss and gst functions
(group swap s and group swap t). If the groups are oriented
with respect to S as shown on the left side of FIG. 168 then
gss 1s 0; if they are swapped as shown on the right side then
gss is 1. From a reference texel (top left), the other three
texel’s group and S,T coordinates can be calculated. For
example, with gss=0 and the reference texel S=0xF, the top
right texel is in group 01 and that its S coordinate is O.

In a similar way, the gst function will swap the original
orientation (shown on the left in FIG. 168) in the T dimen-
sion. Both gss and gst can be determined uniquely from the
group and reference texel information in the color cache
context.

The color cache data store accepts write data from the
format conversion unit at a rate of 16 texels per cycle. The
data store unit accepts write data and read addresses from the
format conversion unit. FIG. 169 shows the bit fields 16900
in the color cache data store input token. The read __info data
field d3102 consists of sixteen read addresses used by the
sixteen total read ports (4 RAMS, 4 ports each). The swaps
data is used to align read data to the appropriate output color
port; this will be explained shortly. The rvalid data field
indicates which of the sixteen output colors are the result of
valid read requests. The write_ info data field 16904 consists
of four 128 bit data words, four 4 bit addresses, and four
write enable bits. The “last” bit indicates that all the cache
entries are filled as of that data token and the 16 entries are
ready to be presented down the pipeline. A stallable bypass
path is preferred in the RAMs so that data written to a given
address can be read from that address and/or stalled in the
same cycle.

Color data is stored sorted by S and T Isb alignment
(1701,5[0]={00, 01, 10, 11}). Four RAMS, each with five
independent ports (1W: 128 bits; 4R: 32 bits each) are used
to store 4 sets of 16 colors each. Each 16 texel color cache
entry stores four colors in each of the four RAMS. Four
colors can be written at a time and four read at a time. This
provides a total read rate of 16 colors out of the data store
RAM and a write rate of 16 colors into data store RAM.

FIG. 170 illustrates a color cache data store unit 17000.
The mapping process of each request on to the appropriate
S and T aligned RAM 17002 utilizes an alignment step. The
Mux0 through Mux3 17004 blocks in FIG. 170 provide this
step. Each mux in FIG. 170 receives one color from each of
the four RAMS. In tiled mode these colors form a 2x2 block.
If the 2x2 block is aligned with the four target texels then no
swapping is necessary. If the texels from each group (0-3,
4-7, 8-11, 12-15) are miss-aligned then they are swapped in
S or T then they are swapped in S or T. The swaps signals
provide indication of which mux needs to swap in S or in T.
As an example, if the reference texel for pixel 0
(corresponding to Mux0) lands on an even S value (Isb of
S=0), then either RAMO or RAM2 will contain the required
data for that texel (depending, of course on the T alignment).
In this case, no swapping in S in necessary. However, if the
reference texel lands on an odd S value (Isb of S=1), then

10

15

20

25

30

35

40

45

50

60

65

72

either RAM1 or RAM3 will contain the required data for
that texel. In this case, swaps[0]=1 and the data for RAMO
is swapped with RAM1 and the data for RAM2 is swapped
with RAM3. After this swap, a second level of swapping can
occur based on the T dimension alignment. FIG. 171 shows
a tiled space mapping 17100 of cache entry to physical
RAMS.

FIG. 172 depicts a linear space storage mapping 17200
according to one embodiment. In linear mode the notion of
interleaving in the T dimension is somewhat lost since the
color cache entries are only 1 sample tall. This is a potential
problem because the cache output performance depends on
being able to read all necessary texels in a single cycle from
the four color cache data store RAMs. If linear mode data is
loaded into the data store RAMs with the same stagger
pattern used by tiled mode data, the data store RAMSs can not
provide read data at full performance. However, by stagger-
ing the texel storage locations as shown in FIG. 172, linear
mode data can be accommodated with full read perfor-
mance.

Although the T[0] bit is not present in linear mode texel
addresses, the tag group implies the value of T[0]. That is,
in linear mode tag groups 2 and 3 always map to cache entry
footprints with T=1, and groups 0 and 1 always map to
footprints with T=0. Thus, when the format conversion unit
writes into a cache entry associated with tag group 0 or 1 in
linear mode it uses the T=0 alignment and when it writes a
cache entry associated with tag groups 2 or 3 it uses the T=1
alignment.

Four set of two swap bits are used for T. Each pixel may
need to have their left and/or right two texels swapped in T.

The raw cache accepts four requests per cycle. The raw
cache has a mechanism similar to the color cache aggrega-
tion unit and group walker; the raw cache aggregation
function attempts to group addresses and the raw cache
walker only presents unique addresses to the raw cache tag
unit. One to four cycles are therefore needed to process a
request to the raw cache.

The raw cache data store unit always takes one cycle per
valid address request to present outgoing data to the format
conversion unit, even if all four cycles are spent emitting the
same address contents or hit data. This behavior has two
reasons: 1) it is a simple way to retire all valid requests
presented to the raw cache, and 2) this is the peak absorption
rate of the format conversion unit/color cache data store for
single cycle fills.

In 4-bit and 8-bit per texel modes it is possible to have
unique tag groups which fall in the same 256-bit memory
address. When this happens only the unique addresses are
posted to the raw cache tag unit. The redundant address or
addresses are not emitted as redundant memory requests.
Thus four requests can be collapsed down to as few as one
actual tag query and perhaps no memory request if that one
request is a raw cache hit. The raw cache context FIFO
(rcfifo) gets one push per raw cache tag query. If all four
addresses can be aggregated into one request, then only one
FIFO push is needed. Each FIFO push is marked with how
many raw cache requests it represents. Note that the color
cache context FIFO contains as many pushes as there are
valid physical addresses. Thus, it is possible to have four
pushes on the color cache context FIFO and only one push
on the raw cache FIFO (with one or no resulting memory
request).

Although the raw cache aggregator functionality is con-
ceptually separate from both the raw cache walker unit and
the color cache tag unit, it may prove more practical to
implement the raw cache aggregator logic in the same
pipeline stage as the color cache tag unit.

US 6,778,181 B1

73

The raw cache address walker unit accepts a stall from the
raw cache tag unit. This stall is actually the OR of the stalls
from the rcfifo (FIFO 2 in FIG. 140) and the memory
interface. The raw cache address walker unit generates stalls
when the number of unique addresses is greater than one. Up
to three or more stalls can be generated (four or more total
cycles).

The address walker scans the four request inputs from the
aggregator and serializes them down to one per cycle which
it presents to the raw cache tag unit. Starting with the first
memory request cycle for a group of up to four or more
requests, it pushes the grouping information provided by the
aggregator unit on to the rcfifo. This grouping information is
used by the raw cache data store when presenting the
memory reads to the format conversion unit; each read
request (redundant or not) takes a cycle at the format
conversion unit end of the raw cache.

The raw cache address walker starts with addrQ and tries
to group addrl, addr2 and addr3 in much the same way as
the color cache group walker. The difference is there is no
observation of blocking alignment. The raw cache address
walker scans for the first non-redundant appearance in the
address list from addr0 to addr3 and emits requests in that
sequence to the raw cache tag unit.

The raw cache tag unit receives a sequential stream of
address requests and generates memory requests when those
address requests miss. This unit accepts a stall (same stall
signal as the raw cache address walker) but does not
generate stalls. It always completes a tag lookup and tag
write in the same cycle. The current plan is the build this unit
as one 1 port 16 entry fully associative LRU cache; this is
a single instance of a 16 entry version of the cache tag
module used in the color cache. Other replacement policies
may be worth exploring (LRA, or some counter based
quasi-LRU mechanism).

The raw cache data store contains entries for 256-bit
words in a 256-bit x N entry RAM. The raw cache data store
slaves it’s state from the raw cache address walker and raw
cache tag units. When the tag detects a hit the data store is
instructed to read the address associated with that hit from
it’s RAM and present it as output. When a miss occurs, the
data store unit over-writes the indicated address in its RAM
and also presents that data as output in the same cycle.

FIG. 173 shows the data 17300 entering the raw cache
data store from the raw cache context FIFO. The raw cache
data store receives an address and a miss signal. The miss
signal indicates that a data store entry is to be overwritten.
If miss is not asserted (but a DVS transaction occurs) then
a hit is assumed and only a read is necessary. The n[1:0] field
specifies how many cycles the current data is to be emitted
by the raw cache data store. Recall the raw cache accepts
four requests per cycle and attempts to group them going
into the raw cache tag unit to minimize memory request
traffic. The n[1:0] field indicates how many physical address
requests are satisfied by this read data. The raw cache data
store emits one request per cycle to the color cache data
store.

FIGS. 174 and 175 are block diagrams 17500 for perfor-
mance simulation of the texture cache. More particularly,
FIG. 174 shows a color cache performance model 17400.
FIG. 175 depicts a raw cache performance mode 17500. See
each module’s respective description in the preceding para-
graphs for more details. The texture cache presents a testing
exception to the general test flow used throughout most of
the 3D pipeline. The following paragraphs outline where and
why the cache is an exception and how to address some of
the resulting issues.

10

15

20

25

30

35

40

45

50

55

60

65

74

The general philosophy employed in testing the 3D pipe-
line’s Verilog RTL code is to consider the HW CSIM a
golden reference from which equivalence can be achieved.
The CSIM does not model the cache’s internal behavior,
thereby disallowing the equivalence-to-golden model of
module level testing adopted in the rest of the pipeline. The
PSIM does not attempt to model the real internal behavior
either, although it does model per cycle behavior to allow
cycle counting performance measurements. The CSIM does
model the texture cache’s external behavior so equivalence
testing can proceed on that level.

To address the module level testing issue, each major
sub-module in the texture cache pipeline can be tested by
vectors from a local CSIM of that module. These sub-
modules are:

te_ctu color tag unit

te_rcu entire raw cache unit
te_rcu_138 raw cache tag sub-unit
te_ fmt format conversion unit
te_cds color data store

Each of the above five sub-modules can be tested using
standard test bench scripts, with the test vectors coming
from a UNIX based C application that produces stimulus for
the module and simulates the intended result. The goal of
module level testing on this level is not to achieve equiva-
lence with a separately created golden reference, but rather
has two specific goals:

1) To assure the module behaves as the designer
intended—at least to the first order. This does not
guarantee final agreement at the TC level, but that is
what TC level testing is for.

2) To provide a infrastructure for debugging TC level
vectors (when they become available) at the module
level.

The ctu module’s behavior is easily defined independently
of the CSIM; the design intent can be tested with a high
degree of confidence. The stimulus is a set of request
addresses, with a random probability of choosing a new
address on each of the four ports, or an address known to be
current and valid.

The two rcu modules can also be defined neatly and
independently of CSIM. The rcu has some additional behav-
iors that need to be tested—for example, generating one
additional address request to the next 256-bit word while in
32-bit mode.

The texture cache interfaces to the memory controller
through the rcu module. This may impose an additional set
of testing requirements.

1) A memory port transactor may be necessary.

2) A mechanism for loading a memory image from the
CSIM through a backdoor into Verilog may be neces-
sary.

3) A mechanism for algorithmically computing a memory
data back result based on input address and mode bits
may be helpful for stand along testing.

The fmt module contains significant data path and data
manipulation logic for color space conversion and format-
ting that matches the CSIM. To perform module level testing
on the fmt module, CSIM code will be incorporated by the
module level test application to generate test vectors. This
introduces some uncertainty in module level testing for fmt,
but this uncertainty became unavoidable with the decision to
not model the cache at all in the CSIM.

US 6,778,181 B1

75

The fmt module performs four categories of format con-
version:
1) YUV to RGB. This conversion is numerical equiva-
lence to the CSIM.

2) Compressed to RGB. This conversion preferably also

requires numerical equivalence to the CSIM

3) Palette to RGB. This concerns bit manipulation, and

testing the Palette write mechanism.

4) RGB to RGB. This conversion is almost completely bit

manipulation.

All four categories involve testing their respective paths
through the format conversion unit’s control logic.

The cds model is most useful when combined with the fmt
unit, but will have its own test vectors as well.

Testing against the golden CSIM can not happen without
the ta_ tad module since the CSIM will only produce vectors
at the ta_ tad input level and tc output level. Thus, the ta_ tad
module may require its own ¢ application to test its intended
functionality; note that the CSIM provides memory images
for texture space. These images need to be loaded into the
back side of the memory port transactor. Tests that involve
re-allocating texture memory will necessitate a mechanism
for re-loading that memory in the simulation.

VTA Hardware Inrerfaces

The VTA interfaces the Setup (su) and Raster (ra) Units at
the top, the Pixel Engine (pe) Unit at the bottom and the
Memory Controller (mc) and Command Front End (ce)
Units on the sides.

The VTA receives per-triangle and per-iteration param-
eters into triangle state FIFOs distributed throughout the
arithmetic pipeline. A triangle state FIFO is allocated for
each iterated parameter. The triangle state FIFOs capture and
maintain the setup data for all currently active triangles and
texture iterations.

Parameters are stored in triangle order, as delivered by the
Setup Unit, and retired in triangle order, as consumed by the
Iteration Units. Each parameter FIFO is managed through
one write pointer and eight read pointers. One write pointer
places parameters in to the FIFO and eight read pointers, one
for each of the eight texture iterations, take parameters out
of the FIFO.

State from the Setup Unit is received until any one of the
VTA triangle-state FIFOs is full. Each FIFOs is sized to
support the depth of the VTA filled with small polygons and
multiple texture iterations. However, when any one of the
triangle state FIFOs fills, the VTA generates a stall to the
Setup Unit.

Parameters from the setup unit are received within a
single DVS packet. This packet includes parameter data and
parameter control defined within the table 17600 shown in
FIGS. 176 A-C.

The SUTA transfer cases, involving a minimum number
of parameters for a tri or a minimum number of parameters
for an iteration, exhibit the behavior described in the fol-
lowing paragraphs.

FIG. 177 illustrates behavior patterns 17700 for a one
iteration polygon with no per-iteration parameter. In this
case, newtri is at least 2 cycles after the previous newtri.
newitr and prmend are not active for the [WbZQp] only
polygons. [WbZQp] is transferred only with no wvalid
[QtSTARGB] iteration.

FIG. 178 illustrates behavior patterns 17800 for a one
iteration polygon with one per-iteration parameter. In this
case, newitr is at least two cycles after newtri. newtri is at
least two cycles after the previous newitr.

10

15

20

25

30

35

40

45

50

55

60

65

76

FIG. 179 illustrates behavior patterns 17900 for a N
iteration polygon with N per-iteration parameters. Here,
newitr is at least two cycles after newtri. newitr is at least
two cycles after previous newitr. newtri is at least two cycles
after previous newitr. newitr is activated once for each active
iteration.

Raster Interface (RATA)

The VTA receives per-pixel raster instructions from the
Raster Unit into the Dispatch Unit. Raster instructions
collect within the dispatcher to form dispatch packets to be
released to the STG Unit. Packets are filled and dispatched
across all of the active texture iterations.

Raster instructions collect until the dispatch packet is full.
A full dispatch packet stalls the Raster Unit until each
dispatch packet has completed dispatch. Packets are released
in descending texture iteration order with a stall condition
for all lesser numbered texture iterations.

Raster Unit instructions are received within a single DVS
packet. This packet includes per-pixel stepping-state and
coverage-control defined within the table 18000 of FIG. 180.

Pixel Engine Interface (TDPE)

The VTA delivers pixel data from Combine Unit to the
Pixel Engine. Pixel data is delivered for fully iterated pixel
quad parameters of ARGB and partially iterated left pixels
parameters of XYZ & Q. Parameters partially iterated are
delivered with delta parameters of dz/dx, dz/dy, dg/dx and
dg/dy.

Additional control exists to support LFB transfers to the
Pixel Engine. For this purpose, a control bit from the CFE
identifies valid LFBs and an LFB transfer type of 3D or
physically addressed. These bits, in conjunction, tell the PE
to deal with the TD data as rendered pixels, 3D processed
LFB data, and 3D bypassed LFB data. physically addressed
LFB data is no longer supported.

Pixel data is delivered to the PE through a single DVS
packet. This packet includes the pixel data signals defined
within the table 18100 of FIGS. 181A-B.

Command Front end Interface (CETA & CETD)

The VTA receives register write mode control from the
CFE Unit into Side-band Interfaces of the TA and TD
blocks. Register writes are captured off of the side-band into
per-triangle and per-texture iteration side-band registers.
Data is captured through a double buffered scheme of active
and pending registers to allow two sets of state for each
register and each texture iteration.

The CFE interface also supports palette downloads to the
Texture Cache at the CETA interface and LFB transfers to
the Combine Unit at the CETD interface. These interfaces
simply extend the side-band bus to provide data and address
to for palette and LFB downloads.

The CETA and CETD interfaces utilize two independent
interfaces to provide for register, palette and LFB writes.
The two interfaces include the address and data buses
defined in the table 18200 of FIGS. 182A-B.

Memory Controller Interface

FIGS. 183 and 184 illustrate tables 18300, 18400 defining
input and output signals associated with the memory con-
troller.

US 6,778,181 B1

77

Following is a description of Streamdef.tv:

/f streams for module vta
vta ceta IN ceta_addr[11:0] ceta_ data[31:0]
vta suta IN suta__itrnum[2:0] suta_ prmsel[3:0]
suta_newtri [0:0] suta__newitr[0:0] suta__prmend[0:0]
suta_ start[50:0] suta_ slope[50:0]
vta rata IN rata_ pop[1:0] rata_ push[1:0] rata_ dir[1:0]
rata_ mask[19:0] rata_ newtri[0:0] rata_ newstate[2:0]
vta cetd IN cetd__addi[21:0] cetd_ data[31:0]
cetd__1fb__valid[0:0] cetd__1fb_ be_ n[3:0]
vta sgram.ram MEMORY 2097152 32
vta agp.ram MEMORY 2097152 32
vta tdpe OUT tdpe_xy_ addr[19:0] tdpe_1fb_ type[1:0]
tdpe__newstate[0:0] tdpe__mask[19:0] \

tdpe__z_ pix0[173:0] tdpe_z_ dx [38:0]
tdpe_z_ dy[38:0] tdpe__q_pix0[173:0] tdpe__q_ dx[38:0]
tdpe_q_ dy[38:0] \

tdpe__a_ pix0[12:0] tdpe_r_ pix0[12:0]
tdpe_g_ pix0[12:0] tdpe_b__pix0[12:0] \

tdpe__a_ pix1[12:0] tdpe_r_pix1[12:0]
tdpe_ g pix1[12:0] tdpe_ b_ pix1[12:0]\

tdpe__a_ pix2[12:0] tdpe_r_pix2[12:0]
tdpe_g_ pix2[12:0] tdpe_b_ pix2 [12:0]\

tdpe__a_ pix3[12:0] tdpe_r_pix3[12:0]
tdpe_g_ pix3[12:0] tdpe_b_ pix3[12:0]

VTA Physical Characteristics

FIGS. 185A-B depict a table 18500 setting forth several
physical characteristics of the RAMs of the VTA. FIGS.
186A—B depict a table 18600 listing exemplary gate counts
of the VTA.

VTA Verification

A VTA diagnostic suite can be used to ensure the integrity
of the CSIM and Verilog implementations of the VTA block
of VIDDEV. The test suite can consist of sub-module,
module and standalone tests. One set of tests will concen-
trate on each of the sub-modules within the VTA CSIM. A
second set of tests will focus on testing the VTA CSIM
model at a functional level. The sub-module and functional
level tests will utilize the CSIM model of the VTA to
generate output transactions that will be compared to the
verilog output.

The test suite provides comprehensive coverage of the
VTA functionality in the CSIM. Due to the complexity of the
VTA engine, the first set of tests concentrate on the sub-
module level tests within the VTA module. Once this set of
tests runs successfully, a set of functional tests are run.

FIGS. 187-195 are tables 18700, 18800, 18900, 19000,
19100, 19200, 19300, 19400, 19500 listing several sub-
module tests. FIGS. 196198 are tables 19600, 19700,
19800 listing several functional coverage tests. Some test
areas specified in Sub-Module Level Coverage can also be
duplicated in Functional Coverage (e.g. testing the Combine
Unit effectively tests Color Combining functions as well). In
that case a test is listed only once.

FIGS. 199A—-199E is a table 19900 listing VTA registers
and fields, specifies which modules they control, and the
name of the test that ensures the coverage. This is intended
to be the checklist to insure complete test coverage.

To the greatest extent possible, the diagnostics can make
use of Glidex API calls to program the hardware models.
The CSIM tests test functionality of the VTA.

Preferably, the geometry is not tested; that means a single
triangle will suffice for most of the tests. That provides the
bandwidth to exercise multiple functional combinations.

10

15

20

25

30

35

40

45

50

55

60

65

78

Except for testing texture cache, VTA tests do depend
neither on the texture size nor on the triangle shape. There-
fore very small triangles can be used, each triangle repre-
senting single testing combination (a triangle should still be
at least one quad large so to exercise four slices of the
pipeline design). Small triangles provide more bandwidth to
test all or most intra logic combinations.

The following paragraphs detail a test plan for each
submodule of the VTA that can be tested using CSIM. For
further information on the CSIM diagnostic tests that are
used to verify the VTA, refer to the section below entitled
VTA Test Descriptions. This section provides details on the
location of the tests, how to run them, and the functions
tested by each diagnostic.

The VTA verification plan assumes that both CSIM and
PSIM models are a fully tested references for the design
functionality and performance. As a result, the requirements
for VTA verification become 1) prove arithmetic agreement
between CSIM and RTL, 2) prove cycle compliance
between Psim and RTL, and 3) prove reliable operation
across all conditions of operation.

Testing the VTA with CSIM provides a couple of chal-
lenges in the areas of virtual texturing and texture caching.
Neither area of the design maps well to checking every
transaction in the CSIM at a certain interface against the
same interface in exactly the same order.

The VTA module (unit) and the VTA sub-modules
(modules) may be tested at the unit level and the module
level to prove completeness. Testing at the VTA module
levels focuses on proving the arithmetic while testing at the
VTA unit level focuses on proving stability and perfor-
mance.

Verification of the VTA is greatly benefited by module
level testing before unit level composition as well as con-
junctive module level checking during unit level test. These
two areas of test allow for a much more rapid approach to
a bug free top level design. Testing at the module level
should flush out most of the low level arithmetic bugs and
test inspection at the module level will help in the diagnosis
of bugs at the unit level.

At the module level, the VTA can be tested by each of the
module level design engineers. Here a full arithmetic test
coverage is expected from a suite of diagnostics that can be
conducted at both the module level and the unit level.

Directed diagnostics to focus on the common and obscure

arithmetic combinations.

Random diagnostics to focus on the exhaustive arithmetic

combinations.

At the unit level, the VTA shall be tested by each of the
module level design engineers on the team. At this level,
each of the design engineers will simulate the design with an
emphasis on exposing problems between modules.

Directed diagnostics to focus on common and obscure

module level interactions.

Random diagnostics to focus on the exhaustive module

level interactions.

FIGS. 200A-200F show a VTA module level test matrix
20000 that itemizes each of the modules of the VTA and
their interaction with software. This matrix can be used as a
checklist/guide for module level test coverage.

FIG. 201 illustrates a VTA unit level test matrix 20100
that itemizes each of the modules of the VTA and their
interaction with software. This matrix is intended to be a
checklist/guide for module level test coverage.

VTA Test Descriptions

The following section provides details on all the VTA
verification tests. The purpose of this section is to provide

US 6,778,181 B1

79

information on various scripts that can be used by a verifi-
cation team and to document the tests location, features, and
use.

The following paragraphs list the tests used to verify the
VTA CSIM as well as the tests used to create vectors that are
run on the VTA verilog. Details of each test and how to build
them are also described below. The test list sections are used
by CARTS and the CSIM test vector generation scripts.
When listing tests, the relative (to VIDDEV) path of the test
is specified along with the name of the executable and the
necessary command line options. If a test needs to be run
multiple times with different options, it should be listed
multiple times with each of the options.

The following section will describe each test, providing
details on the Unit Under Test (UUT), the purpose of the test,
what’s actually tested, what’s not tested, and how to verify
that the test display is correct.

TA_LIA

This test was based on ta_ ani.c. It rotates a textured
rectangle first along the x axis and then along the y axis in
order to show the image quality of anisotropic filtering
effects. These rotations are done five times with increasing
values of maximum anisotropic ratios (VIDDEV_TA__
ANI_MAX_RATIO). Each successive set of rotations
should show improved image quality due to a higher degree
of anisotropic filtering (VIDDEV_TA__ANI_MAX__
RATIO increases by 2 on each pass).

The random options allow for random texels and random
x and y axis rotations. The maximum anisotropic ratio
(VIDDEV_TA__ANI_MAX_ RATIO) can also be random.

The color mip map levels option helps make some of the
filtering more apparent than the default checkboard pattern.
There is also an option to use a texture file rather than the
algorithmic texture patterns.

Command line arguments:

checkboard texture is

substituted with texture in filename.3df
uses random texel values

for texture

uses random X axis

rotation of object

uses random y axis

rotation of object

number of frames to render

use different colors for each

mip map level

use random maximum anisotropic

ratio

-0 write all command line options to a
file called “dbgfile” in the current directory.
pauses after rendering

-xtex:{filename.3df}
-xrandtex: {0/1}
-xrandxrot:{0/1}
-xrandyrot:{0/1}

-xframe.s:{int}
-xemm:{0/1}

-xrandmaxani:{0/1}

-p-1

TA_LMS_FLEXE

This program tests the interaction of features that affect
the Ims calculation for anisotropic texture filtering. There are
6 test cases; each tests two features, i.e. parameters, at a time
by iterating over different combinations of the two param-
eters. The reason it tests two parameters at a time is because
doing a combinatorial test of all the parameters will take too
long to run, and it’s easier to construct meaningful cases
when only two parameters are being tested at a time. Note
that more combinatorial cases can be added to get more
coverage if desired.

All of the cases are built around a routine that draws a 2x2
pixel quad with a given aniratio and lms. All the tests use a
texture that has a constant solid color at each mipmap. This
is important because the effect of each feature is reflected in
the Ims of the quad, and therefore the color of the quad.

80

Command line arguments:

-xsize:N scales each guad to NxN pixels, to make debugging
easier
-xtest:testName run a particular test; this is described in more detail

below

Within each test case, in addition to iterating over com-
binations of the two parameters, for each combination a
range of ani ratios are also iterated over, namely 1 through
32. The only exception to this is the test case that is listed
last, where a range of Ims are iterated over instead of ani
ratios.

Following is a description of the 6 cases, and how the
image can be interpreted:

1. VIDDEV_TA__ANI_MAX_RATIO and VIDDEV__
TA_ANI_RSCALE_LOG2

To run this case, do: ta_ Ims_ fi.exe —xtest:armax__arscale

The effect of the ani max ratio is to widen the anisotropic
patch if needed, and the effect of the ani ratio scale is
to widen any patch whose ratio is greater than 1. The
final width of the patch is the maximum of the two
widths. So the effect and interaction of these two
parameters are reflected in the LMS, and therefore the
color of the quad.

In the image that is drawn, there are some quads whose
Ims calculation is dominated by VIDDEV__TA__ANI__
MAX_RATIO; these are the quads that make up the
horizontal rows of constant color. There is an exception
to this, and that is the rows at the bottom of the image;
those rows correspond to the aniratio bottoming out to
1. There are also quads whose Ims calculation is
dominated by VIDDEV_TA ANI RSCALE _
LOG2; these are the quads that make up the horizontal
rows of varying color.

2. VIDDEV_TA__ANI_MAX_RATIO and VIDDEV__

TA_LMS_ BIAS

To run this case, do: ta_lms_ fi.exe —xtest:armax__
Imsbias

The effect of the ani max ratio is to widen the anisotropic
patch if needed, and its effect on the image is similar to
case #1. The effect of the Ims bias is to narrow or widen
every patch, and its effects are a slight color shift over
every quad.

3. VIDDEV_TA ANI_MAX_ RATIO and VIDDEV _

TA_LMS_MIN/VIDDEV_TA_IMS_MAX

To run this case, do: ta_lms_ fi.exe —xtest:armax__
Imsclamp

The effect of the ani max ratio in this test is similar to #1
and #2. The effect of the Ims clamp is seen easily by the
color clamping on the quads whose lms is being
clamped. This test will also hit the case where the
anisotropic ratio is clamped to 1.0 if the patch is
clamped to the maximum Ims.

4. VIDDEV_TA_ANI_RSCALE_LOG2 and

VIDDEV_TA_IMS_MIN/VIDDEV_TA LMS_MAX

To run this case, do: ta_lms_fi.exe —xtest:arscale__
Imsclamp

The effect of the ani ratio scale is to widen the patch by
a fractional amount, similar to case #1, and the effect of
the Ims clamp is a color clamping similar to #3.

5. VIDDEV_TA_ANI_RSCALE_LOG2 and

¢s VIDDEV_TA IMS BIAS
To run this case, do: ta_lms_fi.exe —xtest:arscale__
Imsbias

10

15

20

25

30

35

45

55

US 6,778,181 B1

81
The effect of the Ims bias is a color shift similar to than
in #2.
6. VIDDEV_TA_IMS_BIAS and VIDDEV_TA__
LMS_MIN/VIDDEV_TA_LMS_ MAX
To run this case, do: ta_lms fi.exe —xtest:lmsbias__
Imsclamp
This is the only case where the inner loop iterates over Ims
values instead of ani ratio values.
TA_LMS_MO_LMS.EXE
This program exercises every value of the following
outputs of the Ims module: lms integer, lms fraction, and
Ims2tcu. It doesn’t do any combinatorial testing; it just
constructs a simple case to confirm that every value can be
passed through those outputs and that each value has the
correct effect on the image.
Command line arguments:

-xsize:N scale each quad to NxN pixels to make debugging
easier

run the Ims integer and fraction test

run the test that uses Ims2tcu as a detail factor

run the test that uses lms2tcu as a texel areal factor

run the test that uses lms2tcu as a lod factor for old

—xtest:lmsfrac

—xtest:detail

—Xtest:tarea

—xtest:lodfrac
trilinear

Only one of the four tests can be run at a time.

For Ims integer and fraction, it simply draws a quad
whose patch in texture space is scaled to obtain the needed
Ims integer and fraction.

For Ims2tcu, the test generates every value when Ims2tcu
is used as a detail factor, as a texel area calculation, and as
a LOD fraction for old trilinear filtering.

TA_LMS_MO_ ANLEXE

This program exercises every value of the following
outputs of the Ims module: ani steps and ani ratio. It doesn’t
do any combinatorial testing; it just constructs a simple case
to confirm that every value can be passed through those
outputs and that each value has the correct effect on the
image.

Command line arguments:

run the aniratio test
run the aniweight test

—xtest:aniratio
-Xtest:aniweight

For the ani ratio test, the program draws a quad for every
value of the 4.4 ani ratio. However, it takes more than one
pixel to tell whether the patch is properly filtered by the
kernel walker. For example, to test an ani ratio of 8, the
program uses a texture 20200 such as the one shown in FIG.
202, where “.” is black and “x” is white.

Then 8 pixels are drawn; for each pixel, construct an
anisotropic patch that is one texel wide (along S) and 8
texels high (along T). FIG. 203 shows the patches 20300 for
the 8 pixels, numbered O to 7, that correspond to the texture
shown in FIG. 202.

In this way, the color of pixels O through 7 should evenly
ramp from almost black to white.

For the ani weight test, the program also draws a quad for
every value of the 4.4 ani ratio. In this case, however, the
purpose is to test that the kernel walker properly weighs the
two samples at the ends of the patch. To do this the program
uses a texture 20400, shown in FIG. 204, where all samples
except those two are black, and the sample at one end is
yellow while the sample at the other end is green:

10

15

20

25

30

35

40

45

50

55

60

65

82

Since the patch is centered around the texture, the two
ends should contribute a small amount of yellow to the pixel.
In order to make this amount visible in the image, the color
combine units are used to scale it up by a factor of 8. So for
integer values of ani ratio, the pixel should be full yellow.

This test exercises every entry in the ani weight table of
the kernel walker.

TA_LMS_MO_DPDC.EXE

This program exercises every value of these outputs of the
Ims module: dsdc and dtdec. It doesn’t do any combinatorial
testing; it just constructs a simple case to confirm that every
value can be passed through those outputs.

Command line args:

None

This program draws a quad with the orientation needed to
result in each value of dsdc,dtdc.

TA__PLANE.EXE

It basically tiles a rectangle with random triangles. There
are a number of options, some of which are set forth in the
following table:

TABLE 36

Scaling the rectangle in screen space

Rotating it about the x-axis

Stretching it along the z-axis to distort perspective

Varying the number of triangles from 2 to 20,000

Enabling random texture data

Load a *.3df texture file (default is checkerboard)
Changing the texture filtering mode (point/bilinear/trilinear)
Specify the number of frames to create movie loop.

To get all the command line option run the following:

ta_plane -o

Now look at the “dbgfile” in the current directory to see
all the options.

This command line will render the woody texture at a 45
degree angle with distorted Z perspective using 2 triangles
with trilinear filtering, (press CTRL-Q to exit, -p—1 enables
this feature):

ta_plane -p-1 +q -xtex:woody.3df -xobjscale:30-

xobjangle:45-xobjscaleZ:5-xtexfilter:3-xmax x:1-
xmax y:1

The “+q” option will create a ppm file of the window
called cmov00lcsim.ppm

This command line will draw the same scene with 20,000
triangles:

ta_ plane -p-1 +q -xtex:woody.3df -xobjscale:30-

xobjangle:45-xobjscaleZ:5-xmax_ x:100-xmax
y:100-xtexfilter:3

This will render 50 triangles with a random texture and no
rotation:

ta_plane -p-1+q -xrandtex:1 -xobjscale:20-xmax__

x:5-xmax_y:5
TA_STG_RC_REC.EXE

This program tests every valid combination of the recur-
sion push and pop masks. In doing so, it tests all combina-
tions of recursion and composition. Since there are hundreds
of combinations, the test will check the image for
correctness, so no golden images are needed.

To do this, it generates a valid push and pop mask. For that
mask, it creates a texture for each tmu that takes into account
whether that tmu is used for recursion or not. If the tmu is
used for recursion, the texture that is created for it such that
in the resulting image it will be easy to check whether
recursion was properly done through all the texture itera-
tions.

In the VTA, for any given push/pop mask, you can think
of each tmu’s texture as having gone through some number

US 6,778,181 B1

83

of times, which I'll call the “depth”, through the recursion
FIFO before it ends up in the final image. This depth affects
the texture that is created for each tmu.

For every tmu, the texture is an 8x8 grid 20500, as shown
in FIG. 205, where each column is used to track the data for
the corresponding tmu, and each row is used to track the
depth of each tmu’s data through the recursion FIFOs.

This is described in more detail below. A “.” means a
black square, and an “X” will mean a colored square; the
value of the color is used in recursion to perturb that square
in a later tmu.

If the tmu does not pop from the recursion FIFO, its
texture is simply a colored square at depth 0, in the column
of that tmu. For example, if tmu0 does not pop, its texture
is as shown in the grid 20600 of FIG. 206.

If the tmu does pop from the recursion FIFO, its texture
is also a colored square at depth O, but there are additional
squares depending on which previous textures are in the data
being popped from the recursion FIFO. For example, if there
are 2 active tmus, where tmul pushes and tmu0 pops (in our
notation that is “tmul>tmu0”, where “>” means to recurse),
their textures and the resulting textures are as shown in the
grid 20700 of FIG. 207.

As another example, suppose the push and pop mask are
configured to do “(tmu2# tmul)>tmu0”, where in notation
“#” means to combine. The resulting grid 20800 is shown in
FIG. 208.

There are hundreds of valid push/pop masks; the program
will iterate through them, generate an image for each, and
check it for correctness.

TA LFLEXE

This is the name for the combined ta_Ims_fi Ims2tcu
and ta_Ims_fi detail diags. It tests three modes supported
by a taDetail register. They are VIDDEV__TA_L.ODFRAC,
which is the lms fraction of the currently selected map.
VIDDEV__TA_DETAIL, the detail factor, which is control-
lable via the grTexDetailControl glide call. And VIDDEV__
TA__TAREA, the texel area, which is controlled via a direct
write to the taDetail register as there is no glide call to set
this value.

The diag operates by setting up TMUO such that the
lod2tcu output is sent directly to the d input of the TCU.
When run in 32 bpp mode, this should allow the full 8 bit
value of the lod2tcu factor to be captured in the frame buffer
in all three channels. It generates ramps of varying pixel
areas across all LODs.

The diag will attempt to allocate a 2Kx2Kx32 bpp
texture, but if there is insufficient memory it will default to
a 256x256x32 bpp texture.

Command line options are set forth in the table below.

TABLE 37

-xlod2tcu (0 = LODFRAC, 1 = DETAIL, 2 = TAREA) select
the Lod2Teu mode to be tested.

-xdBias (-31 to 32) Detail bias, only valid when DETAIL mode
selected

-xdScale (0 to 7) Detail Scale, only valid when DETAIL mode
selected

-xdMax (0.0f to 1.0f) Detail Max, maximum detail value, only

valid when DETAIL mode selected.

-xdiv (0 to 50) number of steps displayed per LOD in the gradient.
(default 11)

-xmaq (0/1) default value of O tests all ratios of texel to screen size <1,
value of 1 tests all ratios of texel to screen size >1. Should be used with
-xlod2tcu values of 1 and 2.

—xonetri (0/1) default 0. Setting this value to 1 will only draw half of a
quad, cutting the number of triangles and pixels generated in half for
simulation.

10

15

20

25

30

35

40

50

55

60

65

84

TABLE 37-continued

-u2 This diag should always be run in 32 bpp mode, so always use —u2.
-p-1 pause after each frame.

Sample command lines are listed in the table below.

TABLE 38

ta_lIfl -u2 -p-1// selects LODFRAC mode by default, each line is a
ramp from one LOD to the next smaller LOD. eg 256 to 128, 128 to 64,
64 to 32, etc. The number of steps is div * log2 of the map size. Pause.
ta_Ifl —u2 —p-1 —xlod2tcu:1 -xdbias:8 —xdScale:1 //

selects Detail mode, the first 32 lines are varying detailBias from -32 to
31 in steps of 2, the next line shows where the LOD break across the
horizontal line, the next 8 lines vary the detailScale from 0 to 7.

When varying the detailBias, the detailScale is held constant to the value
provided (default 0), likewise, when the detailScale is varied, the
detailBias is held to the value provided (default 8).

ta_Ifl -u2 -p-1 -xlod2tcu:2 //selects texel area mode. The first

line shows where each LOD starts and ends, the next 64 lines vary the
VIDDEV_TA_TEXEL_AREA_SCALE__LOG?2 register across 64
values from 0 to 8192. This is really a 5.8 format register.

ta_Ifl -u2 -p-1 -xlod2tcu:2 —xmag:1 —xonetri:1 //selects

texel area mode. The first line shows where each LOD starts and ends, the
next 64 lines vary the VIDDEV_TA_TEXEL_AREA_SCALE_LOG2
register across 64 values from 0 to 8192. Set magnify to view multiple
screen pixel per texel. Only draw one triangle per quad.

TA_VIE_W.EXE

This is a simple 3D Studio model viewer. It will read in
any .3ds format model and display all of the meshes. This is
the old 3D Studio format, not the new 3D Studio Max max
format. It only supports a single texture map, and if no
texture coordinates are supplied, it uses the x,y values of the
vertex for s,t. Currently there is no lighting. Rotation is
limited to the x-axis, it’s trivial to change the objRotAxis
variables in the source to switch the axis of rotation. There
are a number of options, some of which are set forth in the
following table:

TABLE 39

Load any .3ds model (shouldn’t be any limit to size or complexity.)
Scaling the model about the center of the screen.

Rotating it about the x-axis

Enabling random texture data

Load a *.3df texture file (default is checkerboard)

Changing the texture filtering mode (point/bilinear/trilinear)
Specify the number of frames to create movie loop.

The table below lists several arguments and their func-
tionality.

TABLE 40

>ta_ view
Display a predetermined 3D object.
>ta_ view —xmod:modelname.3ds
Read in a different .3ds 3D studio file, this is the old
format, not the new .max 3D studio max format
>ta_ view —-xtex:woody.3df
Will map something more interesting than the default checkerboard
>ta_ view —xrandtex:1
Will use random texture data for texture maps.
>ta__view —xobjscale:10
Will make said object tiny
>ta__view —-xobjangle:30
Will rotate object 30 degrees about the x-axis
“—0” Will write out all the command line options to “dbgfile”
“+q” Will write out a .ppm file of the frame
”—p-1” Will pause the test after each frame, hit CTRL-Q to continue.

US 6,778,181 B1

85
TC_STPEXE

This diagnostic tests all combinations of S&T aspect
ratios, and clamp/wrap/mirror modes. It has two modes of
operation. The default mode draws a specific pattern of
polys in a grid with increasing S on the X-axis, and T on the
Y-axis. The randpoly mode draws polys with random size,
texture size, texture aspect ratio, and S & T clamp/wrap
mirror mode. The texture coordinates are picked such that at
least one corner of the texture is somewhere in the interior
of the poly. The command options are set forth in the table
below.

TABLE 41

1. -xNw:{float} specifies the number of pixels that make up
the width of corner of the texture.

2. -xNh:{float} specifies the number of pixels that make up the
height of corner of the texture.

3. -xrandtex{1/0} indicates whether to use a color ramp or random
data for textures. (same polys drawn)

4. -xminLMS{11-0} specifies the minimum texture size.

5. -xmaxLMS{11-0} specifies the maximum texture size.
The two values define the range of textures tested.

6. —xrandpoly{1/0} enables random poly mode, use with randtex
to enable random texture data as well.

7. -xnumpolys{int} number of polys to draw in randpoly mode.
(default 500}

8. —xtexfmt{17 = 4 bit, 0 = 8 bit, 10 = 16 bit, 18 = 32
bit} Select texture format. (default 16 bpp)

9. -—o write all command line options to a file called “dbgfile” in the
current directory.

10. -X disable tiled addressing

The functions tested are listed in the table below.

TABLE 42

. tex_is_tiled
. Ims__log__aspect

1. Ims_log aspect
2. lms_s_is_larger
3. wrap_s

4. wrap_t

5

6

TC_FMT.EXE

This test is a data check only for all the different formats.
There will be two modes: image and random. In the image
mode, two triangles will be used to build a rectangular image
for each format. When all formats are complete, the pieced
-together rectangles will compose the final image. This test
also has options for render height and width, individual
format rendering, and alpha blending. The render height and
width allow for reduced pixel rendering, while the indi-
vidual format rendering is included for debug. The alpha
blending option tests the formats that have alpha field by
generating an alpha ramp and blending two images using
two TMUs.

Ilustrative command options are set forth in the following
table.

TABLE 43

—

—xrandtex:{1/0} input texture is substituted with random texels.
2. —xsh:{float} scale height of rendered image; useful for reducing pixel
count for debugging purposes.

3. —xsw:{float} scale width of rendered image; useful for reducing pixel
count for debugging purposes

4. —xonefmt:{1/0} with this option, only one format is rendered. The
format is specified with the next option.

5. —xfmt:{0-24} used in conjunction with the above option. This option

specifies the one texture format to be rendered. See format number in
“Functions Tested” column to the left.

10

15

20

25

30

35

40

45

50

55

60

65

86

TABLE 43-continued

6. —xalpha_en: enable alpha bending. This option verifies that the alpha
bits were read in correctly. In this mode, a ramp is written in the
alpha bits. A second texture image is read in, and the two
images are alpha bended together using two TMUs.

7. -o write all command line options to a file called “dbgfile” in
the current directory.
8. -p-1 pauses after rendering
The functions tested are listed in the table below.
TABLE 44
tex__format:

1. R17692 (format 0)

2. YIQ_422 (format 1)

3. ALPHA_ 8 (format 2)

4. INTENSITY_ 8 (format 3)

5. ALPHA_ INTENSITY_ 44 (format 4)
6. P_8 (Palette) (format 5)
7.P_8_6666_EXT (format 6)

8. ARGB&332 (format &)

9. AYIQ_ 8422 (format 9)

10. RGB_565 (format 10)

11. ARGB_ 1555 (format 11)

12. ARGB_ 4444 (format 12)

13. ALPHA_INTENSITY_ 88 (format 13)
14. AP_88 (Alpha/Palette) (format 14)

15. FBCMP (framebuffer compressed)

(format 16)

16. FXT1 (compressed) (format 17)

17. ARBG_8888 (format 18)

18. YUYV_422 (format 19)

19. UYUV_422 (format 20)

20. AYUV_444 (format 21)

21. DXT1 (DX6 compressed) (format 22)
22. DXT2 (DX6 compressed) (format 23)
23. DXT3 (DX6 compressed) (format 24)

TC_MBAEXE

This test will check the base address modes for all
combinations of LMS values for both agp and frame buffer
memory. It will also test the texture staggered feature. It also
has a random texture data and random poly test mode.

The command options are listed in the table below.

TABLE 45
1. —xrandtex:{0-1} solid color textures are substituted with random
texels.
2. —xnumpolys:{int} number of triangles that are rendered in random
poly mode.

3. —xrandpoly:{0-1} enables random poly mode “17. If “0” , all
combinations of base address modes are rendered using solid colors
each mipmap level.

4. -o write all command line options to a file called “dbgfile” in the
current directory.
5. -p-1 pauses after rendering

6. —xmba:{0-4} specifies the multibase address mode. The following
table specifies which mipmap level corresponds to which base
address for each mba mode.

ba values are listed for each mode in the table below.

TABLE 46
Mode bal bal ba2 ba3
0 0-11 — — —
1 8-11 7 6 0-5
2 9-11 8 7 0-6
3 10-11 9 8 0-7
4 1 10 9 0-8

US 6,778,181 B1

87 88
The functions tested are listed in the table below. The functions tested are listed in the table below.
TABLE 47 TABLE 51
1. Ims__ mba_mode 5 1. Ims_en_ npt
2. tex_agp 0,1,2,3 2. lms_s_ max
3. tex__staggered 0,1,2,3 3. Ims_s_ stride
4. tex_base__addr 0,1,2,3 4. npt_t_max
TC_DIT.EXE " TC_LEG.EXE))
This test will check mipmap dithering. It will use textures This test will check legacy tsplit and odd features. This
. . . L . test will use mipmapping tiled/nontiled, different aspect
with the following orientations: deep perspective, upward/ h . . :
. ratios, and different texel sizes The command options are
dov.vnward sl.ant, 1§ft/r1ght/45 degree slants. The command listed in the table below.
options are listed in the table below.
15 TABLE 52
TABLE 48
1. -xtexfmt{17 = 4 bit, 0 = 8 bit, 10 = 16 bit, 18 = 32
1. —xtexfmt{17 = 4 bit, 0 = 8 bit, 10 = 16 bit, 18 = 32 bit} Select texture format. Default 16 bpp
bit} Select texture format. Default 16 bpp 2. —xtexfiltert{1 = point sampled, 2 = bilinear, 3 =
2. —xtexfiltert{1 = point sampled, 2 = bilinear, 3 = trilinear} texture filtering mode. Default point sampled.
trilinear} texture filtering mode. Default point sampled. 20 3. -xrandtex{1/0} indicates whether to use a color ramp or random data
3. -xImsdither{1 = enabledi O = disabled } hardware Ims dithering. for textures. Default disabled.
Default enabled. 4. —xrandpoly{1/0} enables random poly mode, use with randtex to
4. —xfirstlevel{11-0} select the highest mipmap to start texturing enable random texture data as well. Default disabled.
from. Default 11. 5. —xnumpolys{int} number of polys to draw in randpoly mode. Default
5. -—xslices{int} number of polys in the pinwheel pattern. Default is 8. disabled.
6. -xrandtex{1/0} indicates whether to use a color ramp or random
data for textures. Default disabled. 25
7. -xrandpoly{1/0} enables random poly mode, use with randtex to The functions tested are listed in the table below.
enable random texture data as well. Default disabled.
8. —xnumpolys{int} number of polys to draw in randpoly mode.
Default disabled. TABLE 53
9. -—o write all command line options to a file called “dbgfile” in .
. 1. Ims__tsplit
the current directory. 30 2 ms_odd
10. -X disable tiled addressing R
. . . TD_TCU.EXE
The functions tested are listed in the table below. The TCU test program is designed to test each individual
35 function found in the combine unit. To accomplish this, the
TABLE 49 program is composed of ten separate tests, each testing a
\msdith different portion of the unit.
1. ta_lms_dither Test a: Select bits in the TCC
This test cycles through the four main muxes in the TCC:
TC NPTEXE A, B, C, and D, testing the ten different inputs available to
This test will check all s of £ text 40 each. The program selects one mux to test and sets the values
15 test will check all aspects ol non-power ol = texture on the other three paths to allow the input on the selected
maps. It will use linear/tiled formats with various sit max mux to pass through the unit unperturbed. It accomplishes
and strides. It will render corners of textures and check this in the following fashion:
clamping. It also has a random texture data and random poly Select mux A:
test mode. 45 To test mux A, muxes B, C and D have their inputs set
The command options are listed in the table below. to 0. However, the (1-x) function is utilized on the
C path, to make the 0 a 1. Thus the final equation
TABLE 50 becomes (A+0)*1+0=A.
Select mux B:
1. -xNw:{float} specifies the number of pixels that make up the To test mux B. muxes A. C and D have their inputs set
width of corner of the texture. 50 P h i function i ilized h
2. -xNh:{float} specifies the number of pixels that make up the to 0. Once again the (_X) nction 18 utilize O,n t ,e
height of corner of the texture. C path to make the 0 a 1. Thus the final equation is
3. -xrandtex{1/0} indicates whether to use a color ramp or random (0+B)*1+0=B.
data for textures. (same polys drawn) Select mux C:
4. —xrandpoly{1/0} enables random poly mode, use with randtex to To test mux C, muxes A, B and D have their inputs set
enable random texture data as well. 55 0 while the (1 functi he O to b
5. —xnumpolys{int} number of polys to draw in randpoly mode. to O while the (1-x) nctl.on causes the 0 to become
(default 500} a 1 on B. The final equation is (0+1)*C+0=C.
6. —xtexfmt{17 = 4 bit, 0 = 8 bit, 10 = 16 bit, 18 = 32 Select mux D:
, b“;f Sel{elctztgj%re for_fgat- t(}‘liefa‘_l(llttﬁfbgf’) ¢ texo (defult 32) To test mux D, muxes A, B and C have their inputs set
. —xtexw{l- specifies the width of the npt texture (defau S * _
8. -xtexh {1-2048} specifies the height of the npt texture (default 32) 60 to 0. .The final eql}atlon is (0+0)*0+D=D.
9. -xtexstr {8-2048} specifies the stride of the npt texture The ten different mux mputs allowed are as follows:
10. +T{tiled}:{agp} specifies linear (tiled = 0) or tiled (tiled = 1) Czero:
mode. When agp = 0, texture memory is local memory This value is simply R=0, G=0, B=0.
(frame buffer); when agp = 1, texture memory is from agp. Cprev:
11. -o write all command line options to a file called “dbgfile” in the prev: . ..
current dircctory. Cp.re.v. is the output of the. CCU on TMUl. This is
12. -p-1 pauses after rendering 65 initialized to simply be Citer by placing Czero on A,

B and C and Citer on D for TMU1. On TMU1, Citer
is initialized to be R=256, G=256, B=0.

US 6,778,181 B1

89
Citer:

For TMUO, Citer is initialized as R=256, G=0, B=0.
Ctex:

Ctex uses the texture named Buzz.3df.
CO:

C0 is simply the constant color defined by grConstant-
ColorValue. For this test it is defined as R=255, G=0,
B=255.

LOD2TCU:

The value on this select is determined in a mux higher
up the pipe. The default value passes through this
select.

Aprev:

This value is defined on the CCU Alpha portion in
TMUL. Setting A, B, C=0, and D=Aiter on TMU1,
Aprev is actually Aiter on TMUI. Initialize this
value to 224, so the color output is R=224, G=224,
B=224.

Aiter:
For TMUQO, Aiter is initialized as 160. So the color
output should be R=160, G=160, B=160.
Atex:
Once again use the texture named Buzz.3df.
AO0:

This is the constant alpha value defined by grConstant-
ColorValue. For this test it is defined as 64, so the
color output should be R=64, G=64, B=64.

Test b: Tex Shift Functionality

This test loads two textures, one a simulation of spotlights
and the other a picture of Buzz Lightyear, for example, into
TMUs 1 and O respectively. It combines these textures in the
following fashion: in TMU1, D is set to Ctex (the lights)
while the rest of the inputs are set to 0. This value is passed
through to the TCU on TMUO. Here, Ctex (now Buzz) is
placed on the A mux, C is set to Cprev (the lights) and B and
D are set to 0. Thus a multiply effect is produced, (Buzz)*
(Spotlights). The test forms this image 5 times. The first
time, the lights are left as is, the second time they are shifted
into overbright by 1 bit. The third iteration they are shifted
by two bits and so on until the final iteration they are shifted
by four bits. At this point the spots where there are lights and
image are pretty dissolved.

Test ¢: Clamp Mode on the TCC

This test is almost identical to the Tex Shift Functionality
test. The only difference is that in TMUT1, after the texture is
shifted into overbright regions, its output is then clamped to
the range of 0.255. Thus the output images do not wash out.
The only effect of the shift is that the spotlights become
more and more intense as more and more texels are into the
overbright region and then clamped to 255.

Test d: Min/Max Capability on the TCC

The Min Max function allows the TCU to select a color
utilizing an equation of the form (A<B)?C:D. Set this test up
by loading a texture that is a ramp of colors, displaying a
sizable spectrum. Place this texture on muxes A and C, and
place the constant color on muxes B and D. The constant
color is initialized to be Gray, or R=128, G=128, B=128. The
(1-x) function is set to negate B, so that instead of (A+B),
(A-B) is provided. This is because really the A<B?C:D
function is (A-B)<0?C:D. This complete, the TCU will pass
the texture color if it is less than 128, otherwise it will just
pass 128.

Test e: TCC (1-x) Functionality

This test examines the three functions available to each
mux in the (1-x) block. It tests each mux, one at a time. To
test the individual muxes, it uses the same technique as the
Select Bits Test. All values for the muxes not being tested are

10

15

25

30

35

40

45

50

55

60

65

90

chosen to allow the value of the mux chosen to pass straight
through the unit. This time however, the test utilized three
TMUs. In the first TMU, a (1+x) function is used on the
selected mux. In the following TMU, a (1-x) function is
used. In the final TMU a (-x) function is used. Thus if A
were the selected mux, —(1-(1+A))=-1+1+A=Ais provided.
So, if these functions work, the final image should be the
same as an image without any manipulation. This test
produces five images, the first an image of the texture with
no manipulation, then tests of muxes A, B, C and D.

Test f: Select bits in the TCA

This test cycles through the four main muxes in the TCA:
A, B, C, and D, testing the six different inputs available to
each. The program selects one mux to test and sets the values
on the other three paths to allow the input on the selected
mux to pass through the unit unperturbed. It accomplishes
this in the following fashion:

Select mux A:

To test mux A, muxes B. C and D have their inputs set
to 0. However, the (1-x) function is utilized on the
C path, to make the 0 a 1. Thus the final equation
becomes (A+0)*1+0=A.

Select mux B:

To test mux B, muxes A, C and D have their inputs set
to 0. Once again the (1-x) function is utilized on the
C path to make the 0 a 1. Thus the final equation is
(0+B)*1+0=B.

Select mux C:

To test mux C, muxes A, B and D have their inputs set
to O while the (1-x) function causes the 0 to become
a 1 on B. The final equation is (0+1)*C+0=C.

Select max D:

To test mux D, muxes A, B and C have their inputs set
to 0. The final equation is (0+0)*0+D=D.

The TCC simply passes Citer from TMU1 down through
the unit causing the color R=256, G=256, B=0 to be dis-
played. The six different mux inputs allowed are as follows:

Azero:

This value is simply A=0;

Aprev:

Aprev is the output of the CCU on TMUL. This is
initialized to simply be Aiter by placing Azero on A,
B and C and Aiter on D for TMU1. On TMU1, Aiter
is initialized to be 224.

Aiter:

For TMUQ, Aiter is initialized as 160.

Atex:

Atex uses the texture named Buzz.3df.

AO0:

CO0 is simply the constant alpha defined by grConstant-
ColorValue. For this test it is defined as 64.

LOD2TCU.

The value on this select is determined in a mux higher
up the pipe. The default value passes through this
select.

Test g: Tex Shift on the TCA

This test functions almost identically to the Tex Shift Test
on the TCC. The only difference is that all of the manipu-
lation previously done in the TCC is now done in the TCA.
The TCC simply passes down the light texture, not shifted,
multiplied by the Buzz Lightyear texture.

Test h: Clamp Mode on the TCC

This test functions almost identically to the Clamp Mode
Test on the TCC. The only difference is that all of the
manipulation previously done in the TCC is now done in the

US 6,778,181 B1

91

TCA. The TCC simply passes down the light texture, shifted
and clamped, multiplied by the Buzz Lightyear texture.
Test i: Min/Max Capability on the TCA
This test functions almost identically to the Min/Max
Capability on the TCC. The only difference is that all of the
manipulation previously done in the TCC is now done in the
TCA. The TCC simply passes down a constant texture.
Test j: TCA (1-x) Functionality
This test functions almost identically to the TCC (1-x)
Functionality test. The only difference is that all of the
manipulation previously done in the TCC is now done in the
TCA and the texture value is replaced with AQ. The TCC
simply passes down a constant color, R=255, G=0, B=255.
TD_CCU.EXE
The CCU test program is designed to test each individual
function found in the color combine unit. To accomplish
this, the program is composed of ten separate tests, each
testing a different portion of the unit.
Test a: Select bits in the TCC
This test cycles through the four main muxes in the CCC:
A, B, C, and D, testing the ten different inputs available to
each. The program selects one mux to test and sets the values
on the other three paths to allow the input on the selected
mux to pass through the unit unperturbed. It accomplishes
this in the following fashion:
Select mux A:
To test mux A, muxes B, C and D have their inputs set
to 0. However, the (1-x) function is utilized on the
C path, to make the 0 a 1. Thus the final equation
becomes (A+0)*1+0=A.
Select mux B:
To test mux B, muxes A, C and D have their inputs set
to 0. Once again the (1-x) function is utilized on the
C path to make the 0 a 1. Thus the final equation is
(0+B)*1+0=B.
Select mux C:
To test mux C, muxes A, B and D have their inputs set
to 0 while the (1-x) function causes the 0 to become
a 1 on B. The final equation is (0+1)*C+0=C.
Select mux D:
To test mux D, muxes A, B and C have their inputs set
to 0. The final equation is (0+0)*0+D=D.
The ten different mux inputs allowed are as follows:

Czero:
This value is simply R=0, G=0, B=0.
Cprev:

Cprev is the output of the CCU on TMUI1. This is
initialized to simply be Citer by placing Czero on A,
B and C and Citer on D for TMU1. On TMU1, Citer
is initialized to be R=256, G=256, B=0.

Citer:

For TMUQ, Citer is initialized as R=256, G=0, B=0.
Ctex:

Ctex uses the texture named Buzz.3df.
C0:

C0 is simply the constant color defined by grConstant-
ColorValue. For this test it is defined as R=255, G=0,
B=255.

Cl:

C1 is the secorid constant color. For this test it is

defined as R=0, G=255, B=255.
Ctcu:

This value is defined on the TCU in TMUO. Setting A,
B, C=0, and D=Citer Ctcu is actually Citer on
TMUO. Initialize this value to R=256, G=0, B=0.

10

15

20

25

35

40

45

50

55

60

65

92
Ctcusum:
For TMUO, Ctcu is R=256, G=0, B=0, so the sum isjust
256. Therefore R=256, G=256, B=256 are output.
Aprev:
Aprev is the output of the CCU on TMUL. This is
initialized to simply be Aiter by placing Zero on A,
B and C and Aiter on D for TMU1. On TMU1, Aiter
is initialized to be 224, so R=224, G=224, B=224 are
output.
Aiter:
For TMUO, Aiter is initialized as 160, so R=160,
G=160, B=160 are output.
Atex:
Atex uses the texture named Buzz.3df.
AO0:
A0 is defined as 128, so R=128, G=128, B=128 are
output.
Al:
Al is defined as 255, so R=255, G=255, B=255 are
output.
Ateu:
This value is defined on the TCU in TMUO. Setting A,
B, C=0, and D=Aiter, Atcu is actually Aiter on
TMUQ. Initialize this value to 160, so R=160,
G=160, B=160 are output.
Z:
This value is simply the z values. These are all .5.
Test b: CCC Clamp
This test loads two textures, one a simulation of spotlights
and the other a picture of Buzz Lightyear, into TMUs 1 and
0 respectively. It combines these textures in the following
fashion: in the TCU on TMU1, D is set to Ctex (the lights)
while the rest of the inputs are set to 0. The value is then
shifted into the overbright regions by n bits, where n=0 to 4.
This value is passed through to the CCU on TMU1. Here A,
B, and C are all zero again, and D is Ctcu. The output of this
module is clamped to a range of 0 to 255. This value is
passed to the TCU of TMUO. Here, Ctex (now Buzz) is
placed on the A mux, C is set to Cprev (the lights) and B and
D are set to 0. Thus a multiply effect, (Buzz)*(Spotlights) is
created. The output images do not wash out because the over
bright. values have been clamped. The only effect of the shift
is that the spotlights become more and more intense as more
and more texels are into the overbright region and then
clamped to 255.
Test ¢: CCC Min/Max Function
The Min Max function allows the TCU to select a color
utilizing an equation of the form (A<B)?C:D. Set this test up
by loading a texture that is a ramp of colors, displaying a
sizable spectrum. Place this texture on muxes A and C, and
place the constant color on muxes B and D. The constant
color is initialized to be Gray, or R=128, G=128, B=128. The
(1-x) function is set to negate B, so that instead of (A+B),
(A-B) is provided. This is because really the A<B?C:D
function is (A-B)<0?C:D. This complete, the CCU will pass
the texture color if it is less than 128, otherwise it will just
pass 128.
Test d: CCC (1-x) Function
This test examines the three functions available to each
mux in the (1-x) block. It tests each mux, one at a time. To
test the individual muxes, it uses the same technique as the
Select Bits Test. All values for the muxes not being tested are
chosen to allow the value of the mux chosen to pass straight
through the unit. This time however, the test utilized three
TMUs. In the first TMU, a (1+x) function is used on the
selected mux. In the following TMU, a (1-x) function is

US 6,778,181 B1

93

used. In the final TMU a (-x) function is used. Thus if A
were the selected mux, —(1-(1+A))=-1+1+A=Ais provided.
So, if these functions work, the final image should be the
same as an image without any manipulation. This test
produces five images, the first an image of the texture with
no manipulation, then tests of muxes A, B, C and D.

Test e: CCC Azero Bit

The CCC has a bit that, when enabled, causes whatever
value that was selected on the A mux to become 0. To test
this, two images are run. The first time, CO is placed on A,
and zeros on B, C, and D. The (1-x) function is used to
convert C to 1. Thus, our image should just contain CO. The
second pass through, enable the Azero bit, which forces the
image to black.

Test f: CCA Select Bits

This test cycles through the four main muxes in the CCA:
A, B, C, and D, testing the six different inputs available to
each. The program selects one mux to test and sets the values
on the other three paths to allow the input on the selected
mux to pass through the unit unperturbed. It accomplishes
this in the following fashion:

Select mux A:

To test mux A, muxes B, C and D have their inputs set
to 0. However, the (1-x) function is utilized on the
C path, to make the 0 a 1. Thus the final equation
becomes (A+0)*1+0=A.

Select mx B:

To test mux B, muxes A, C and D have their inputs set
to 0. Once again the (1-x) function is utilized on the
C path to make the 0 a 1. Thus the final equation is
(0+B)*1+0=B.

Select mux C:

To test mux C, muxes A, B and D have their inputs set
to 0 while the (1-x) function causes the 0 to become
a 1 on B. The final equation is (0+1)*C+0=C.

Select mux D:

To test mux D, muxes A, B and C have their inputs set
to 0. The final equation is (0+0)*0+D=D.

The TCC simply passes Citer from TMU1 down through
the unit causing the color R=256, G=256, B=0 to be dis-
played. The six different mux inputs allowed are as follows:

Azero:

This value is simply A=0;

Aprev:

Aprev is the output of the CCU on TMUL. This is
initialized to simply be Aiter by placing Azero on A,
B and C and Aiter on D for TMU1. On TMU1, Aiter
is initialized to be 224.

Aiter:

For TMUQ, Aiter is initialized as 160.

Atex:

Atex uses the texture named Buzz.3df.

AO0:

AQ is simply the constant alpha defined by grConstant-
ColorValue. For this test it is defined as 128.

Al:

Al is simply the constant alpha defined by grConstant-
ColorValueExt. For this test it is defined as 255.

Ateu:

This value is defined on the TCU in TMUO. Setting A,
B, C=0, and D=Aiter, Atcu is actually Aiter on
TMUQ. Initialize this value to 160, so R=160,
G=160, B=160 are output.

Ctcusum:

For TMUO, Ctcu is R=256, G=0, B=0, so the sum is just
256.

10

15

20

25

30

35

40

45

50

55

60

65

94
Z:
This value is simply the z values. These are all .5.

Test g: CCA Clamp Function

This test functions almost identically to the Clamp Mode
Test on the CCC. The only difference is that all of the
manipulation previously done in the CCC is now done in the
CCA. The CCC simply passes down the light texture, shifted
and clamped, multiplied by the Buzz Lightyear texture.

Test h: CCA Min/Max Function

This test functions almost identically to the Min/Max
Capability on the CCC. The only difference is that all of the
manipulation previously done in the CCC is now done in the
CCA. The CCC simply passes down a constant texture.

Test i: CCA (1-x) Function

This test functions almost identically to the CCC (1-x)
Functionality test. The only difference is that all of the
manipulation previously done in the CCC is now done in the
CCA and the texture value is replaced with AO. The CCC
simply passes down a constant color, R=255, G=0, B=255.

Test j: CCA Azero Bit

This test functions almost identically to the CCC Azero
bit test. Only difference is what was done in the CCC is now
done in the CCA. The CCC simply passes down a constant
color, R=255, G=0, B=255.
TD_RNDCH.EXE

The td_ rndch test program is designed to test the chro-
makey functionality in the VTA. The test utilizes four
command line switches to allow the user to choose what
aspect to test. A list of the switches can be obtained by
running td_rndch —o. This will dump the description of
switches into the local dbgfile. The following table is a
listing of the available options and rationale behind them.

TABLE 54

size - This switch defines the size of the test square. The test is written
in clip coords so the screen goes from (-1.0f, -1.0f) to (1.0f, 1.0f).
Default value: 0.25f

seed - This switch is an integer used as the randomization seed.

Default value: 1234567890

numtests - This switch defines how many tests to cycle through. Basically,
the test will set up a random state (as explained below) and draw a test
square. This variable simply stipulates how many states to form and
consequently how many test squares to draw.

Default value: 100

pd - This variable is to define what percentage of tests have chroma
disabled.

Default value: 10

pet - This variable is to define what percentage of tests should be chroma
texture tests vs. regular chroma.

Default value: 50

The test will draw a number of test squares on the screen,
after randomly setting up texchroma or regular chroma
states. The probability of selecting texchroma mode is
defined using the pct switch, as described above.

If texchroma is chosen, a random texture (out of eight
preselected) is loaded into TMU 0. Then two random colors
are selected to provide the chroma range settings. Addition-
ally two other random numbers are selected. The first is a
random number between 0 and 15 inclusive. This number is
the range mode in which texchroma will function. Each of
the RGB color components can be chosen to be inclusive or
exclusive plus the chroma-range block can be the intersec-
tion of the rgb colors, or the union of the three colors.
Inclusive means that color components within the range are
prohibited, while exclusive prohibits color components out-
side the range. The intersection mode will prohibit colors
only if each of the RGB factors is prohibited. The union
mode will prohibit a color if any of the RGB factors are

US 6,778,181 B1

95

prohibited. The second random number is between O and 3
inclusive. Zero corresponds to chroma disabled for the test.
The percentage of tests utilizing a disabled chroma is
determined by the switch pd. This number will provide the
key mode. O disables chroma, 1 performs traditional chroma,
2 chroma replace, and 3 percentage passed. Once this mode
is set, the test square is drawn. Once it is drawn, the buffer
is cleared and once again, randomly it is decided to try
texture chroma or regular chroma.

If regular chroma is chosen, the test square will be
gouraud shaded using the random rgb values defined at each
vertex of the test square. Once again two random colors are
chosen to provide the chroma range settings and two random
numbers to define the range mode and key mode. The
procedure is the same as above except this time the key
mode is chosen to be between 0 and 2 inclusive. 0 will
disable chroma, 1 enables chroma key, and 2 enables chroma
range. Zero corresponds to chroma disabled for the test. The
percentage of tests utilizing a disabled chroma is determined
by the switch pd. The test square is then drawn, and a buffer
clear is performed.

TD_A CC.EXE

The td__acc test program is designed to test the accumu-
lator functionality in the VTA. The test utilizes two com-
mand line switches to allow the user to choose what aspect
to test. A list of the switches can be obtained by running
td_acc —o. This will dump the description of switches into
the local dbgfile. The table below is a listing of the available
options and rationale behind them.

TABLE 55

size - This switch defines the size of the test square. The test is written in
clip coords so the screen goes from (-1.0f, -1.0f) to (1.0f, 1.0f).

Default value: 0.25f

test - This switch is a string telling the program which tests to run. The
choice follow
Default value:

wn

The test will draw a number of test squares on the screen
following the design of the following tests.

TABLE 56

A) ADD BEFORE LOAD

This test simply attempts to pop the acc before pushing it.

b) Load, Load, Add

This test pushes twice, then pops the acc.

LOAD, ADD, ADD

This test pushes, then pops twice.

d) Load and Add Simultaneously
This test pushes and pops simultaneously. (Thus the pop will be
undefined.)

e) Load, Shift, Add
This test pushes ctex onto the acc. It then uses acc_shift and shifts
over 0, 1, 2, 3 bits, then pops and displays.

f) Load, Shift
This test pushes ctex onto the acc, uses acc__shift to shift over
0, 1, 2, 3 bits, and then display ctex without popping.

g) Load with OB, Add
This test shifts ctex into the ob using tex_ shift with 0, 1, 2, 3 bits.
It then pushes this onto the acc, and then pops it.

h) Load, Add and Load Simultaneously
This test pushes onto the acc. It then pops this value while loading
a value at the same time. Then pops this final value.

1) Using ACC_SHIFT to average Sum of Textures
This test spreads the same texture across each tmu. Then it cycles
through using 1, 2, 4, or 8 tmus. With 1, it shifts the texture over by
0

]

bits pushes it, pops it, displays. For 2 tmus, it pushes texture onto
tmu, pops it and adds it with the same texture (thus = 2*texture)
and pushes this value. It then does an acc__shift

over 1 bit, pops it, and this should be almost identical to just
ctex. Likewise for 4 and 8 tmus.

10

15

20

25

30

35

40

45

50

55

60

65

96

TD_RNDTR.EXE

The td_ rndtr test program is designed to randomly form
triangles using different functionality in the VTA. The test
utilizes a number of command line switches to better focus
the random stages. A list of the switches can be obtained by
running td_rondtr o. This will dump the description of
switches into the local dbgfile. The following table is a
listing of the switches in more depth.

TABLE 57

Frames - This switch just tells how many frames of tbe test to run.
Default value: 1

Tri - This switch tells how many triangles to draw each frame.

Default value: 125

Small - This switch defines the maximum side length of a small triangle.
The test is written in clip coords so the screen goes from (-1.0f, -1.0f)
to (1.0f, 1.0f).

Default value: 0.1f

Med - This switch defines the maximum side length of a medium triangle.
Default value: 0.5f

Large - This switch defines the maximum side length of a large triangle.
Default value: 0.75f

Seed - This switch is an integer used as the randomization seed.

Default value: 1234567890

Change - This switch simply gives the probability of the test switching
modes. Td__rndtr will run in three modes: texture combine, gouraud
shading, or a combination of the two. Once it has entered a certain mode,
it has a certain probability of changing modes given by this switch.
Default value: 40

Alpha - This switch just defines whether the test should use alpha blend-
ing

or not.

Default value: FXFALSE

Zbuffer - This switch just defines whether the test should use z buffering
or not.

Default value: FXFALSE

Mintmu - This switch sets the minimum number of tmus to use.

Default value: 1

Maxtmu - This switch sets the maximum number of tmus to use.
Default value: 8

Tge - This switch sets the probability of entering the texture, gouraud, or
combo states. This data is recorded in the following fashion: ?ttggg. For
example 30% texture, 40% gouraud, 30% combo would be 30040.
100% gouraud is just 100.

Default value: 33033 (33% texture, 33% gouraud, 34% combo)

Sml - This switch sets the probability of having a small, medium, or large
triangle. This data is recorded in the following fashion: ?ssmmm. For
example 10% small, 0% medium, 90% large would be 10000. 40%
medium, 60% large is just 40.

Default value: 33033 (33% small, 33% medium, 34% large)

Aa - This switch just defines whether the test should use anti-aliasing
when drawing triangles.

Default value: FXFALSE

Ob - This switch just defines whether the test should allow over-bright
colors when drawing triangles.

Default value: FXFALSE

To invoke a switch run randtri —xswitch:value, for
example:
randtri -xaa —xtri:1000-xsml:70010
will run randtri with anti-aliasing creating 100 triangles with
70% small triangles, 10% medium triangles and 20% large
triangles.
TD_RNDVTEXE
The td_r dvt test program is designed to randomly form
triangles using random states in the VTA. The test has been
written to ensure that all states are legal, e.g. no accumulator
pops before pushes etc. The test utilizes a number of
command line switches to better focus the random stages. A
list of the switches can be obtained by running td_ rndvt o.
This will dump the description of switches into the local
dbgfile. Here is a listing of the switches in more depth.
Frames—This switch just tells how many frames of the
test to run.
Default value: 1

US 6,778,181 B1

97

Tri—This switch tells how many triangles to draw each
frame.

Default value: 125

Ob—This switch will allow iterated colors into over-
bright range.

Default value: FXFALSE

sml—This switch sets the probability of having a small,
medium, or large triangle. This data is recorded in the
following fashion: ?ssmmm. For example 10% small,
0% medium, 90% large would be 10000. 40% medium,
60% large is just 40.
Default value: 33033 (33% small, 33% medium, 34%

large)

roc—This switch simply gives the probability of the test
switching number of TMUs utilized. Td__rndvt will run
with a random number of TMUs, but will change this
number with probability roc.
Default value: 10

seed—This switch is an integer used as the randomization
seed.
Default value: 1234567890
small—This switch defines the maximum side length of a
small triangle in pixels.
Default value: 200.0f
med—This switch defines the maximum side length of a
medium triangle in pixels.
Default value: 200.0f
large—This switch defines the maximum side length of a
large triangle in pixels.
Default value: 500.0f
vis—This switch attempts to ensure that the information
makes more visual sense. It will only place color values
on the TCC and CCC (i.e. no alpha values) and make
sure that C is not CZERO.
Default value: FXFALSE
To invoke a switch run randvta —xswitch:value, for
example:
randvta —xob —xtri:1000-xsml:70010
will run randvta with over-bright evaluated (i.e. iterated)
colors creating 100 triangles with 70% small triangles, 10%
medium triangles and 20% large triangles.
ANICUBE.EXE
The anicube test simply draws a cube on the screen,
placing a different texture on each of the six faces. It then
proceeds to rotate the cube along each of the three axes. A
frame swap occurs between each iteration, allowing for the
images to be saved and animated. The program has a few
constants of interest defined at the beginning. These are
listed in the following table.

TABLE 58

NUM_FRAMES: How many frames of animation to produce
TOTAL_DEGREES: How many degrees in the X, y, and z direction
the cube should rotate.

The functions being tested include basic multi texture in
3D and rotations. This is a good primitive to use to look for
artifacts in animation.

ANISQU. EXE

The anisqu test draws a simple square on the screen,
layering a single texture a given number of times, scaling by
an appropriate scale factor so that at the end it should
produce the original texture. In other words, one could
specify to layer the texture 4 times, and the program would
scale the texture by ¥ at each TMU, and then add the four

10

15

20

25

30

35

40

45

50

55

60

65

98

results. This program repeats this process while rotating the
square, producing an animated sequence. It too has some
interesting constants defined at the beginning of the file, as
shown in the following table:

TABLE 59

NUM_ITER - total number of TMUs.

NUM_LAYERS - total number of times the texture should be layered
NUM__FRAMES - total number of frames for the animation
NUM_DEGREES - total number of degrees the square should be rotated.

The functions being tested include loss of precision in
multiple texture layers and the resulting effect on animated
sequences.

OB. EXE

The ob test tests basic over bright attributes. It takes a
texture of Buzz Lightyear and multiplies it with a light
texture, with 5 lights: one red, one blue, one green, and two
white. It then shifts the light texture by one bit into the
overbright region and displays a new image. On the third
pass it shifts by two bits, on the fourth three, and the fifth
four bits. As the values get larger, more and more of the
image gets washed away.

The functions being tested include multiplicative over
bright characteristics.

TD_OBCLP. EXE

Td_ obclp is almost identical to ob, but the value of the
light texture is clamped immediately following the shift into
overbright so that the resulting image is never washed out.
This tests the clamp functionality at the base of the CCU.

The functions being tested include the clamp function at
the base of the CCU.

OBADD. EXE

Obadd is also almost identical to ob. However, instead of
multiplying the light texture and the buzz texture, the two
are added together. Before being added together however,
the light texture is multiplied by %: so that the white doesn’t
immediately wash out the buzz texture.

The functions being tested include additive over bright
characteristics.

OBMTEX. EXE

The obmtex is another overbright test. It takes a single
texture, layers it eight times on a square (one on top of
another) taking it into the over bright region, then scales it
down by Y. Thus, the final product should be near identical
to the original texture mapped once. Constants of interest are
set forth in the following table.

TABLE 60

NUM_ITER - number of time to lay the texture down.

NUM_FRAMES - number of frames for animation

TOTAL_DEGREES - number of degrees to rotate the square through the
animation

NUM_TEXTURES - number of textures to load.

The functions being tested include loss of precision in
layering textures and the resulting effect on animation. Also
tested is shifting into overbright through purely additive
methods.

INVTEX. EXE.

The invtex test tests the functionality of the various (1-x)
operations on the a, b, ¢, and d channels in the TCU. It draws
a single texture on a square, but goes through 3 TMUs. The
first TMU performs a (1+x) operation on the input texture
color. The second performs a (1-x) on the previous TCU
color. The final performs a (-x) operation on the previous
TCU color. This provides —(1-(1+x))=-1+(1+x)=x. Thus,

US 6,778,181 B1

99

the same image is generated as if the texture were laid
directly on a square. This test runs through 4 cycles, each
cycle testing one of a, b, ¢, or d.

The functions being tested include the (1+x) functions on
the TCU.
MINMAX. EXE

Minmax simply tests the functionality of the (a<b)?c:d
function of each TMU. It uses a rainbow gradient texture to
lay down on a square. However, before placing the texture
values on the square, it compares it with a constant gray
00808080. Thus, if this function operates properly, no rgb
value should be higher than 128. A simple modification
allows the user to choose whether to test the function in the
TCU or the CCU.

The functions being tested include the (a<b)?c:d functions
on the TMU.
MGOUR.EXE

This test sets up a random number of tmus and draws
random triangles on the screen utilizing only gouraud shad-
ing. It has a few command line switches, which are listed in
the following table.

TABLE 61
max: sets the maximum side length of a triangle from vertex a
seed: sets the randomization seed
frames: number of frames to produce
tri: number of triangle per frame
ob: allow the shading to go into over bright.

The functions being tested include multiple iteration color
combine.
3x3. EXE

This test creates a 3x3 set of images on the screen. The
first row is composed of three squares with their centers cut
out. The first square utilizes color shading, the second has a
texture mapped onto it, and the third has sections of constant
color. These three boxes rotate around the z-axis. The first
object in the second row is a diamond, actually two triangles
with a % pixel space in between them. The next two objects
are the same type of squares as above (with sections of
constant color) but one square lies behind the other, and is
at an angle with its top left corner sticking out. The diamond
rotates on the z-axis while the middle square stays still and
the third square rotates around the y-axis. This causes some
interesting intersections to take place. The third row is a
repeat of the first row, but has some changes in the alpha
values. The first square has its alpha value go from 0 to 255
from left to right, the second from top to bottom, and the
third from top left to bottom left. On the top and left side of
this screen setup, two long, skinny triangles are drawn.
These rotate towards each other on the z-axis. These tri-
angles will intersect with some of the other images pro-
duced. Constants of interest are set forth in the following
table.

TABLE 62

NUM__FRAMES - Number of frames of animation to produce.
NUM__DEGREES - Number of degrees to rotate objects.

The functions being tested include texture compression
and anti-aliasing performance.
PICKET. EXE

The picket test draws a square on the screen, one line at
time, skipping spaces in between, and placing a texture the
face. It then procee ds to rotate the square along the z-axis.
A frame swap occurs between each iteration, allowing for

10

15

20

25

30

35

40

45

50

55

60

65

100

the images to be saved and animated. The program has a few
constants of interest defined at the beginning. These are
listed below:

TABLE 63

NUM__FRAMES: How many frames of animation to produce
TOTAL_DEGREES: How many degrees in the z direction the cube
should rotate.

RUNG__WIDTH: Width in pixels of each rung in the picket fence
RUNG__HEIGHT: Height in pixels of each rung in the picket fence
NUM_RUNGS: Number of rungs on the picket fence

GAP_HEIGHT: Height in pixels of the gap between rungs
GAP__INCREASE: Number of pixels to increase GAP__HEIGHT by in
between each rung

The functions being tested include effects of anti-aliasing
between small spaces.

Note that other tests that are used to provide fault cover-
age for functions that may not be able to be tested with the
CSIM diagnostics can also be provided, including verilog
tests.

Software Programming Model

This section details how software can program the VTA,
giving specific cases. The following paragraphs describe
how to use the VTA to perform new rendering algorithms.

Textures for specular and diffuse lighting can be divided
into three types: Material Textures, Lightmaps, and Shad-
ows. Material textures describe the surface; they can include
diffuse properties, specular properties, and bumps. Light-
maps include specular and diffuse lighting, along with
reflection maps and projection maps. Shadow maps are used
to attenuate light maps.

Specular and diffuse lighting can be done by Creating a
specular light reflection map, a Diffuse lightmap, and specu-
lar and diffuse material maps. Lighting can optionally be
done in the iterator. The Output equations are then:

Color=(Specular light)*(Specular material)+(Diffuse

Light)*(Diffuse Material),

The accumulator at the output of the color combine unit
is used for the add.

Alternatively, if the Alpha of the texture isn’t needed, it
can be used as the specular component, multiplying the
alpha by a specular lightmap, and rgb against a diffuse
lightmap, and then adding the result together.

The following paragraphs describe methods for construct-
ing lighting maps using VIDDEV hardware instead of
requiring host computations. This could lead to more inter-
active lighting in applications.

In this description, lighting maps are built using the
rendering hardware, texture maps that model the light
source, and shadow maps that model the occlusion. Later,
the lighting maps are applied to the polygons during the
rendering of the scene. When lighting maps are built, they
are rendered into the frame buffer with a constant Z distance
across the lighting map.

The first case discusses using projected textures to build
lighting maps with distance/angle attenuation. If a projected
texture that models the light source (point light source has all
texels at the same intensity is built, spotlights have a fall-off
at the edges, etc. Then the light can be projected onto the
lighting map. The only problem with doing this is that
distance and angle attenuation isn’t taken into account.

The light source attenuation is proportional to the square
of the distance, and also related on the angle of the light rays.
Basically the equations give the number of photons that hit
a given area of the light map. Another way of looking at this,

US 6,778,181 B1

101

is the intensity of the Light is proportional to the area of the
projected texture that each pixel takes up. For Anisotropic
texturing, the texel space area of each pixel is already
calculated. If the filtered texel is multiplied by the area, the
distance attenuated light is generated.

FIG. 209 illustrates a model 20900 for building light maps
using projected textures. In FIG. 209, the “Projected” light
source 20902 models the way the light looks. For a point
light source 20904, the Projected light source can be a small
(1-pixel) texture with a uniform color in every pixel. The
rendering hardware is used to render each lightmap
separately, then use the lightmaps when rendering the scene.
The light source texture is projected onto the framebuffer
using standard projected texture techniques, the only differ-
ence being that the filtered texel value is multiplied by the
area the pixel takes up in texture space.

For real projected textures however, the light value is
multiplied by the area of the pixel in projected texture space,
and then the area of the pixel is divided by the surface
texture space. This gives the area of the texture in lightmap
space.

The following paragraphs describe using backward tex-
turing to apply shadow maps while generating light maps.
This method of generating shadows has many advantages. It
adds the shadow attenuation into the lighting map, rendering
shadows at lower resolution than if applied to the final scene.
Also, if objects and lights aren’t moving (just the
viewpoint), then the same lighting map can be used over
many scenes. Also as lights move, their old position can be
subtracted from the map, and the new position added,
removing the need to re-render the entire map when one
thing moves.

The following discussion describes a way to map an
algorithm into VIDDEV hardware, accelerating the con-
struction of lightmaps. FIG. 210 illustrates a model 21000
for building shadows.

First, a shadow map 21002 is created by rendering the
scene (light maps only) from the point of view of the light
source 21004. Instead of rendering color, each light map’s
ID # is rendered instead of color. This texture is point
sampled. Note: When rendering the lightmaps in light source
space, the coordinates of the lightmaps in light source space
can be saved offline, as they will be useful in the next step.

FIG. 211 depicts a model 21100 for determining occlusion
using shadow. When building the lightmaps, the shadow
map is transformed into lightmap space, and texture mapped
onto the surface. In this case, the filter compares the light-
map’s ID against the value in the shadow map.

If they’re equal, then a 1 is generated. If not, a zero is
generated. A percentage-passed filter is used on neighboring
texels to produce an attenuation value. This attenuation
value is multiplied by the projected light source’s value to
produce the light’s contribution to the lightmap.

Transforming the shadowmap to lightmap space is very
easy. The coordinates of the transformed lightmaps from
rendering in light source space are the S,T, and W in the
lightmaps space. So the transform is re-using the coordinates
saved in the previous step.

Since an identity compare is performed during lightmap
reconstruction, the shadow map can be point sampled to
prevent artifacts. This is one of many cases where multiple
virtual TMUs can perform a function that’s very difficult
with multi-pass.

One problem with the current approach (and also the
traditional approach) is that convex polygon intersection can
cause problems. For instance, in the above figure, the area of
the lightmap that’s off the surface 104, and/or under surface

10

15

20

25

30

35

40

45

50

55

60

65

102

105 (see FIG. 210) will be detected as “in shadow”. This can
cause the filtering of the shadow mask to create a dark spot
in this corner. Also, when the bilinear filter is used, the dark
spots behind the may also cause the corner to get darker. To
avoid this, convex abutting lightmaps are given the same
ID#. Then during the compare, the off-and near-off polygon
texels will be lit correctly.

As an illustration, the following paragraphs discuss gen-
erating a scene with a box and a corner, with two light
sources. In the present description, the same cross section of
each image is discussed. FIG. 212 shows a model 21200 for
simple lightmap generation. In FIG. 212, the box 21202 is
defined by surfaces 21204, 21206, 21208, and 21210, and
the corner by surfaces 21212 and 21214. One light 21216 is
close to the objects, and another light 17918 at infinity.

FIG. 213 is an illustration of a model 21300 for generating
a shadow map. First the shadowmaps are rendered from the
viewpoint of each light source (see FIG. 213). From Light
21216, the Left side of the wall is visible, followed by two
sides of the box, followed by the right wall. From Light Two,
it is the Left Wall, part of the Right wall, one side of the box
(21206) and the right wall. As mentioned before, the XYZ
coordinates for all triangles, transformed into lightsource
space, are saved for a later step.

Since the right and left walls attach at a concave angle,
they will both be given the same texture ID (21302 for
reference). In cases where a lightsource illuminates the
corner, this will be important. It’s not important for this
example, however. Second, each lightmap is constructed by
rendering each light source texture through the shadow map.

Specular lighting and reflection maps can be used with the
shadow maps during scene rendering (instead of lightmap
rendering). Here, the Specular or reflection map is projected
onto the surface as normal. Simultaneously with this, the
shadow map for the light is projected on the surface from the
light source, and used to generate the value used to attenuate
the specular light.

Overbrightening is generated by making the output of the
filter into a floating point number with a 3-bit exponent. This
is done by effectively changing the output of the texture unit
to a 3.8 floating point value, where the 3-bit exponent is set
to zero. It is then multiplied or added to by floats in the TCU.
The float can come from a constant register, a previous
texture, or from the area calculation done upstream.

Bump Mapping uses recursive texturing, and reflection
mapped textures: The bump map contains two components
per texel: A deltaS component and a deltal component.
These components indicate how far the reflection vector is
displaced from this surface. The deltaS and deltaT values are
filtered normally, then a 2x2 transform is performed, scaling
and rotating these coordinates. The coordinates are then
converted into floating point numbers, and these numbers
are added to the S and T values that come out of the multiply
by W circuit. This disturbs the S and T coordinates of the
reflection map (which can be used for Phone lighting). The
2x2 pixel quad of Ss and Ts will have been disturbed before
the LOD calculation, so the LOD will take into account the
bumpiness of the surface when choosing a mipmap level.

FIG. 214 is a drawing 21400 that describes how reflection
mapping works. A reflection map 21402 is created, which
describes how the world looks from the reflective object. As
a triangle is rendered, coordinates in the reflection map are
mapped to the vertices of the triangle, based on the reflection
from reflection map to the eye. The triangle is then rendered
like a regular texture map.

One deviation of the approach is to replace the reflection
map with a “specular reflection map”, which describes the

US 6,778,181 B1

103

specular lighting behavior and placement. Then when the
reflection mapping operation is performed, the object looks
like it was phong shaded for free.

FIG. 215 shows a model 21500 for bump mapping. Bump
mapping is basically perturbing the normals used during
phong shading. This maps easily into perturbing the S and T
coordinates of the reflection map. So for our version of
bump mapping, a bump map texel is filtered, which contains
displacement values for the reflection map (2 components).
These displacement values are then scaled and rotated (a 2x2
transform) and then added to the Per-Pixel S and T coordi-
nates (before Mip-mapping).

One advantage of this approach is if instead of using a
specular reflection map for the lighting surface, a true
reflection map is used, effects like rippling water, diffraction
through irregular glass, etc. can be easily generated.

The following paragraphs describe anisotropic LOD cal-
culation. FIG. 216 illustrates a model 21600 for mapping
pixels 21602 in texture space. FIG. 217 shows a model
21700 for mapping pixels into texture space for anisotropic
texturing. With Anisotropic texturing, the pixel is mapped
into a quad in texture space. The direction of the major axis
in the quad is referred to as the “line of anisotropy”. The
length of the area of the quad divided by the length of the
line of anisotropy is the LOD. The slope of the line needs to
be calculated, and the ratio of the major and minor sides of
the rectangle is the “anisotropic ratio”.

Once the anisotropic line’s slope (dC/dT, dC/dS), Aniso-
tropic ratio, and LOD are calculated, the line of anisotropy
is walked on the two mip levels that straddle the LOD.
Starting at the center, the first two texel addresses are
generated by adding half the slope in both directions. Two
more texels are generated from there by moving outward
from the first two texel addresses by the anisotropic slope.
The number of texel addresses generated per mip level is
equal to the next largest even number greater than the
anisotropic ratio. For each of these Texel addresses, a
Bilinear interpolate is performed. FIG. 120 illustrates a
model 12000 for bilinear interpolations across the line of
anisotropy. The result is then scaled and added to previous
results.

All bilerp values are scaled by the same amount, except
for the endpoint values

The equations used are:

Anisotropic line=Max (dTex/dX, dTex/dY)
LOD=min(dTex/dX, dTex/dY)
AniRatio=AniLine/LOD

As shown in FIG. 46, the distance walked along the line
of anisotropy is the same on both LODs 4602, 4604. This is
because the real line of anisotropy is actually between these
two rectangles, with the same aspect ratio.

For Anisotropic ratios less than two, the weighting factor
of both bilerps is 12, and the sample points move towards the
center of the pixel, shrinking the rectangle along the line of
anisotropy.

FIG. 220 illustrates a model 22000 for mapping pixels
into texture space for anisotropic texturing for a 2x3 quad.
Since the anisotropic filter quads mesh perfectly (almost) in
texture space, the area of the anisotropic filter quad is
equivalent to the area of the quad defined by the four pixel
centers.

More accurately, the area of anisotropy is equal to the
determinant for each vector pair.

The following paragraphs describe trilinear LOD calcu-
lation. FIG. 221 illustrates a model 22100 for generating

10

15

20

25

30

35

40

45

50

55

60

65

104

four pixels/2clk. Generating 4 Pixels/2¢clk, the equation for
generation LOD is much simpler than VIDDEV, since
dS/dX, dT/dX, dS/dY. dT/dY can be computed by simple
subtracts. The deltas are then used to generate distances
between pixels in the X and Y direction (by the root/sum of
squares, and the larger of the two directions (dTex/dX and
dTex/dY) is used. The log is taken and used as the LOD.
This finds the best-fit square that the pixel fits into.

The following paragraphs describe how the VTA can be
programmed to perform multiple textures per pixel.

Assume that it is desired to paint a triangle with:

A bump Map

A reflection Map (disturbed by bump map)
A specular surface map

A diffuse light map

A diffuse surface map

No evaluated (i.e. iterated) colors

For this example, assume all maps are trilinearly filtered.
The equation to use is:

Output=(diffuseSurface(S70))* (diffuseLight(S70))+(specular
Surface(S70))* (reflectionMap(ST1+bumpMap(ST70))

All maps except the reflection map are associated with the
surface, so they all use the same ST coordinates (ST0). The
bump map’s output is used to disturb the reflection map’s
coordinates, which are based on the viewer’s eye point. The
reflection map is multiplied by the specular surface map,
generating the specular portion of the shading algorithm. A
diffuse surface and a diffuse lightmap are multiplied
together, and then the specular and diffuse components are
added together. FIG. 222 is a table 22200 illustrating values
that can be used when processing multiple textures per pixel.

For generating bump maps, the first TCU performs tri-
linear processing. The second TCU output is provided using
the following equation:

Out={S$*C[31:24], $*C[23:16], T*C[15:8], T*C[7:0]}; (Tlocal-
(Tlocal *(1-Const))=Tlocal* Const//Multiply part of 2x2 trans-
form.

The CCU output is generated using the following equa-
tion:

Out[31:24]=Tlocal[31:24 +Tlocal[23:16]. Out[16:0]=Tlocal [15:8]+
Tlocal [7:0]/summing part of transform

While various embodiments have been described above,
it should be understood that they have been presented by
way of example only, and not limitation. Therefore, the
breadth and scope of a preferred embodiment should not be
limited by any of the above-described exemplary
embodiments, but should be defined only in accordance with
the following claims and their equivalents.

What is claimed is:

1. A graphics processing system, comprising:

(a) a front end module for receiving pixel data;

(b) a setup unit coupled to the front end module and

adapted for generating parameter coefficients;

(c) a raster unit coupled to the setup unit and adapted for
generating stepping information;

(d) a virtual texturing array engine adapted for texturing
and coloring the pixel data based on the parameter
coefficients and the stepping information, the virtual
texturing array engine further for:
retrieving texture information utilizing texture

coordinates, utilizing the texture information to gen-
erate results, and

US 6,778,181 B1

105

utilizing the texture information and the results to
generate further results by determining which of a
first technique and a second technique is to be
emploved,

wherein the first technique includes utilizing the results
to modify the texture coordinates and the second
technique includes utilizing the texture information
to generate the further results which are modified
based at least in part on the results; and

(e) a pixel engine adapted for processing the textured and

colored pixel data received from the virtual texturing
array engine.

2. The graphics processing system as set forth in claim 1,
wherein the virtual texturing array engine includes a dis-
patcher unit for assembling pixel packets.

3. The graphics processing system as set forth in claim 1,
wherein the virtual texturing array engine includes a ST
generator for generating perspective correct S and T
addresses.

4. The graphics processing system as set forth in claim 1,
wherein the virtual texturing array engine includes a level-
of-detail unit for generating a level-of-detail.

5. The graphics processing system as set forth in claim 1,
wherein the virtual texturing array engine includes a kernel
walker for generating neighborhoods of S and T addresses.

6. The graphics processing system as set forth in claim 5,
wherein the virtual texturing array engine includes a filter
for filtering the neighborhoods of S and T addresses.

7. The graphics processing system as set forth in claim 1,
wherein the virtual texturing array engine includes an
address unit for converting texture requests to physical
addresses.

8. The graphics processing system as set forth in claim 1,
wherein the virtual texturing array engine includes a data
unit for converting raw texture data to color data.

9. The graphics processing system as set forth in claim 1,
wherein the virtual texturing array engine includes a com-
bine unit for performing texture and color combine opera-
tions to generate output.

10. The graphics processing system as set forth in claim
9, wherein the virtual texturing array engine includes an
accumulate unit for performing an operation on the output of
the combine unit selected from the group consisting of
capturing, accumulation, and bypassing.

11. The graphics processing system as set forth in claim
1, wherein the virtual texturing array engine includes a side
band module for delivering a mode state to the graphics
processing system.

12. The graphics processing system as set forth in claim
1, wherein the virtual texturing array engine includes a
dispatcher unit, a ST generator, a level-of-detail unit, a
kernel walker, a filter, an address unit, a data unit, a combine
unit, an accumulate unit, and a side band module.

13. The graphics processing system as set forth in claim
1, wherein the virtual texturing array engine includes a
plurality of components selected from the group consisting
of a dispatcher unit, a ST generator, a level-of-detail unit, a
kernel walker, a filter, an address unit, a data unit, a combine
unit, an accumulate unit, and a side band module.

14. The graphics processing system as set forth in claim
1, wherein the virtual texturing array engine includes a
dispatcher unit, a ST generator coupled to the dispatcher
unit, a level-of-detail unit coupled to the ST generator, a
kernel walker coupled to the level-of-detail unit, an address
unit coupled to the kernel walker, a cache coupled to the
address unit, a filter unit coupled to the cache, a combine
unit coupled to the filter unit, an accumulate unit coupled to
the combine unit, and a side band module coupled to the
dispatcher unit, the ST generator, the level-of-detail unit, the
kernel walker, the cache, the filter unit, the address unit, the
combine unit, and the accumulate unit.

15

20

25

30

35

40

45

50

55

60

65

106

15. The graphics processing system as set forth in claim
1, wherein the virtual texturing array engine includes a
recursion first-in-first-out (FIFO) memory.

16. The graphics processing system as set forth in claim
1, wherein the virtual texturing array engine includes a
recursion first-in-first-out (FIFO) memory for providing
recursion feedback while texturing and coloring the pixel
data.

17. A graphics processing method, comprising:

receiving pixel data utilizing a front end module;

generating parameter coefficients utilizing a setup unit
coupled to the front end module;

generating stepping information utilizing a raster unit
coupled to the setup unit;

texturing and coloring the pixel data based on the param-

eter coefficients and the stepping information utilizing

a virtual texturing array engine, the virtual texturing

array engine further for:

(a) retrieving texture information utilizing texture
coordinates,

(b) utilizing the texture information to generate results,
and

(c) utilizing the texture information and the results to
generate further results by determining which of a
first technique and a second technique is to be
employed, wherein the first technique includes uti-
lizing the results to modify the texture coordinates
and the second technique includes utilizing the tex-
ture information to generate the further results which
are modified based at least in part on the results; and

processing the textured and colored pixel data received
from the virtual texturing array engine utilizing a pixel
engine.

18. The method as set forth in claim 17, wherein the
modification involves a mathematical function.

19. The method as set forth in claim 17, wherein the
second technique includes combining partial results from
multiple texture fetches using a mathematical function
selected from the group consisting of a replacement, a
multiplication, an addition, and a dot product.

20. The method as set forth in claim 17, wherein a
multiplexer is utilized to input the results and the texture
coordinates.

21. A graphics processing system, comprising:

means for receiving pixel data;

means for generating parameter coefficients;

means for generating stepping information;

virtual texturing array means for texturing and coloring

the pixel data based on the parameter coefficients and

the stepping information, the virtual texturing array

means further for:

(a) retrieving texture information utilizing texture coor-
dinates.

(b) utilizing the texture information to generate results,
and

(c) utilizing the texture information and the results to
generate further results by determining which of a
first technique and a second technique is to be
employed, wherein the first technique includes uti-
lizing the results to modify the texture coordinates
and the second technique includes utilizing the tex-
ture information to generate the further results which
are modified based at least in part on the results; and

means for processing the textured and colored pixel data.

#* #* #* #* #*

